
Tree PCPs

Tamer Mour∗ Alon Rosen† Ron D. Rothblum‡

July 7, 2025

Abstract

Probabilistically checkable proofs (PCPs) allow encoding a computation so that it can be
quickly verified by only reading a few symbols. Inspired by tree codes (Schulman, STOC’93), we
propose tree PCPs; these are PCPs that evolve as the computation progresses so that a proof
for time t is obtained by appending a short string to the end of the proof for time t− 1. At any
given time, the tree PCP can be locally queried to verify the entire computation so far.

We construct tree PCPs for non-deterministic space-s computation, where at time step t,
the proof only grows by an additional poly(s, log(t)) bits, and the number of queries made by
the verifier to the overall proof is poly(s) · tε, for an arbitrary constant ε > 0.

Tree PCPs are well-suited to proving correctness of ongoing computation that unfolds over
time. They may be thought of as an information-theoretic analog of the cryptographic notion of
incrementally verifiable computation (Valiant, TCC’08). In the random oracle model, tree PCPs
can be compiled to realize a variant of incrementally verifiable computation where the prover is
allowed a small number of queries to a large evolving state. This yields the first construction of
(a natural variant of) IVC in the random oracle model.

“Forty-two!” yelled Loonquawl. “Is that all you’ve got to show for
seven and a half million years’ work?” “I checked it very thoroughly,”
said the computer, “and that quite definitely is the answer.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

∗Bocconi University, BIDSA. E-mail: tamer.mour@unibocconi.it. Work supported by European Research Coun-
cil (ERC) under the EU’s Horizon 2020 research and innovation programme (Grant agreement No. 101019547), and
Stellar Foundation Grant.

†Bocconi University, BIDSA. E-mail: alon.rosen@unibocconi.it. Work supported by European Research Coun-
cil (ERC) under the EU’s Horizon 2020 research and innovation programme (Grant agreement No. 101019547),
Cariplo CRYPTONOMEX grant, and Stellar Foundation Grant.

‡Succinct. E-mail: rothblum@gmail.com.

1

Contents

1 Introduction 3
1.1 Tree PCPs . 3
1.2 Our Results . 5
1.3 Incremental Proofs . 5
1.4 Further Research . 6

2 Technical Overview 7
2.1 The BFLS Blueprint . 7
2.2 The Tree PCP Outline . 7
2.3 PCP-Friendly Tree Codes? . 9
2.4 The Base Tree Code . 9
2.5 Evaluating Consistency . 10

3 Preliminaries 11
3.1 Incremental Ensembles . 12
3.2 Tree Codes . 12

4 The Tree Code 14
4.1 Local Correctability of Tensor Tree Codes . 17
4.2 A Local Test for The Flattened Code . 19
4.3 The Base Code . 20

5 Constraint Evaluation under Codewords 23
5.1 The Transition Constraints . 24
5.2 The Consistency Constraints . 27

5.2.1 Shifting under Codewords . 29
5.2.2 Checking Consistency in Flattened Codewords 33
5.2.3 Evaluating The Coefficients Ψ and Φ . 37
5.2.4 Proof of Lemma 5.8 . 39

6 The Zero Test 41
6.1 Sumcheck for Tree Code Tensors . 43
6.2 The Zero Test Proof Oracle . 44

7 The Tree PCP 46
7.1 The Proof Oracle . 46
7.2 The Verifier . 47
7.3 De-Amortization . 49

2

1 Introduction

Consider an enormous computational task carried across multiple generations. For instance, the
mathematical corpus produced by humanity or, say, the mere ledger of some blockchain. Is it
possible to quickly verify that the current generation’s computation state is correct?

Using a probabilistically checkable proof (PCP), it is possible to encode computations so that
at any later point one can quickly verify their correctness [BFLS91, FGL+96, AS98, ALM+92].
However, in the context of our trans-generational computation, we additionally wish to refrain
from regenerating the entire encoding each time a new computation step is performed.

Traditional PCPs lack such an incremental encoding property. They are in fact non-incremental
by design: their representation of computation guarantees large Hamming distance between the
encoding of any two distinct paths of computation. Thus, any additional computational step
requires regenerating a large portion of the encoding.

We introduce tree PCPs: proofs that can be incrementally generated and quickly verified.
Whatever part of the proof has already been generated becomes canon and any newly generated
proof is appended to the existing one. The proof can be efficiently verified at any point in time by
reading a small number of symbols and running a prescribed verification algorithm on them.

Tree PCPs are inspired by the notion of tree codes [Sch93]. Originally motivated by interactive
communication, tree codes allow for online encoding and guarantee tree distance: the i-th symbol
of the codeword can depend only on the first i symbols of the message, and any two codewords
differ in many coordinates but only starting from the point at which they diverge.

A PCP is to an error-correcting code what a tree PCP is to a tree code. The former inherits
Hamming distance from the underlying code, whereas the latter tree distance. Both require their
respective error-correcting code to be locally testable. Local testability means that proximity of a
given word to the tree code can be tested by reading very few locations in the alleged codeword,
so that highly corrupt codewords are rejected with high probability.

In [MRR25] it was shown how to construct locally testable tree codes. This is a crucial first
step towards attaining tree PCPs, but far from being sufficient. While the blueprint for tree PCPs
and some of the machinery that comes into realizing it are inherited from traditional PCPs, the
setting in which tree PCPs are constructed requires taking incrementality into consideration.

Closest to tree PCPs is Valiant’s notion of incrementally verifiable computation (IVC) [Val08].
An IVC is a computationally-sound proof system in which one can incrementally prove that a long
computation was done correctly. Soundness of tree PCPs is unconditional, but it is assumed that
the PCP string is stored in its entirety and can be (locally) read by the verifier. We further contrast
tree PCPs with IVC and other notions of incremental proofs in Section 1.3.

1.1 Tree PCPs

Similarly to [Val08], our focus is on verifiability of non-deterministic, space-bounded computation,
relative to a circuit C : {0, 1}3s → {0, 1} that verifies a non-deterministic step function.

The computation starts with an initial (canonical) configuration a0 ∈ {0, 1}s. At time-step t,
the computation can progress from configuration at−1 ∈ {0, 1}s to configuration at ∈ {0, 1}s if and
only if there exists a witness wt ∈ {0, 1}s that satisfies C(at−1, at, wt) = 1.

Definition 1.1. A sequence p = (a0, a1, . . . , an), is said to be a path under C if and only if there
exists a sequence of witnesses (w1, . . . , wn) so that C(at−1, at, wt) = 1 for all t ∈ [n].

We denote the set of all paths under C by P (C). The size s of configurations at and of witnesses
wt, as well as the size |C| of the circuit C, are all constant in the length n of the computation.

3

The goal is to verify that the computation induced by C reaches a configuration a in n steps.
Define the language circuit reachability as:

CktReach = {(C, a, n) | ∃(a0, . . . , an) ∈ P (C) : a0 = 0, an = a} . (1)

A witness for membership of (C, a, n) in CktReach consists of a path p = (a0, . . . , an) and a
witness w = (w1, . . . , wn) for membership of p in P (C).

Remark 1.2. Unlike IVCs that require succinctness, the restriction to space-bounded computations
is not inherent to tree PCPs but is rather a limitation of our construction. While we choose to
restrict the definition of tree PCPs to this special case for simplicity, we note that one can think of
natural generalizations to broader classes of incremental computations, as we discuss in Section 1.4.

Given a witness (p, w), the language CktReach can be verified in time O(|C| · n) by simply
verifying that C(at−1, at, wt) = 1 for all t ∈ [n]. In a model where a verifier is allowed to query a
proof π, PCPs enable probabilistic verification of CktReach in o(|C| · n) time.

Definition 1.3 (PCP Verifier). A PCP verifier V for a language L ⊂ {0, 1}∗ with soundness error
ϵ ∈ (0, 1) is a probabilistic algorithm that, on input a statement x ∈ {0, 1}n, makes oracle queries
to a proof π and outputs 0 (rejects) or 1 (accepts), such that the following properties hold:

– Completeness: For any x ∈ L, there exists a proof oracle π such that Pr[V π(x) = 1] = 1.

– Soundness: For any x /∈ L of length n, and any proof oracle π, Pr[V π(x) = 1] < ϵ.

Any π for which the completeness condition holds is said to be an accepting proof for x.

Tree PCPs are PCPs for the language CktReach where the proof oracle is monotone with
respect to the statement, namely where adding a step in the computation merely requires appending
a short string to the proof.

Definition 1.4 (Tree PCP). An (ℓ, q, ϵ)-tree PCP consists of a PCP verifier V for the language
CktReach so that for every circuit C : {0, 1}3s → {0, 1}, there is an ensemble of proof oracles
{πp}p∈P (C) where, for any (p, a) ∈ P (C) of length n:

– Completeness: π(p,a) is an accepting proof for (C, a, n).

– Monotonicity: π(p,a) = (πp, π
′) for |π′| ≤ ℓ(n, |C|).

On input (C, a, n) the verifier V makes at most q(n, |C|) queries and has soundness error ϵ(n, |C|).

Tree PCPs are non-trivial when both the verifier’s query complexity q and the length of a new
step in the proof ℓ are sublinear in the size of the computation n · |C|. If q is linear, a verifier could
simply read the entire path of computation. If ℓ is (quasi-)linear, a tree PCP can be created by
concatenating (standard) PCPs, each proving the computation from scratch.

Ideally, we would like q to be much smaller than n · |C| and ℓ to be independent of n, leading
to a total proof length almost linear and approaching the length of state-of-the-art standard PCPs.
Just like in standard PCPs, the soundness error ϵ can be always reduced by repetition as long as
it is bounded away from 1 (say 2/3).

We aim to minimize the complexity of generating a new proof symbol. We think of a prover
that, at any time n, has random access to the tree PCP up to step n− 1, takes as input the next
configuration an and witness wn, and outputs a string of length ℓ to be added to the PCP.

4

1.2 Our Results

We construct a tree PCP where both the verifier’s and prover’s complexity at time step n are
proportional to nγ , for an arbitrarily small constant γ > 0. The length of the new string added to
the proof, namely of the prover’s output, is only polylogarithmic in n.

Theorem 1.5 (Tree PCP). For any γ > 0, there exists an (ℓ, q, ϵ)-tree PCP with ℓ = poly(log(n), |C|),
q = nγ · poly(|C|) and ϵ = n−ω(1), where extending the proof takes time nγ · poly(|C|).

Our tree PCP satisfies a stronger notion of soundness than that of Definition 1.3, which we call
continual soundness. In our tree PCP, if a verifier at time-step n accepts a proof π for a statement
(C, an, n) (with probability exceeding the soundness error) and, later at time-step n′ > n, accepts an
extended proof (π, π′) for a statement (C, an′ , n′), then it must hold that (C, an′ , n′) is an extension
of the statement (C, an, n), i.e. that there exists p ∈ P (C) where the nth configuration is an and
the (n′)th configuration is an′ . Notice this property does not hold in general and, for example, it is
not satisfied by the trivial solution of concatenating PCPs.

Tree PCPs can be compiled à la Kilian/Micali [Kil92, Mic95] into succinct, computationally
sound proofs in the random oracle model. The resulting proof-system is a form of IVC [Val08] in
which the prover needs to maintain a large state consisting of the evolving tree PCP and its Merkle
tree,1 but otherwise adheres to the standard IVC model.

At time-step n = 1, 2, . . . , the (stateful) prover takes as input security parameter λ ∈ N, a
configuration an such that (a0, . . . , an) ∈ P (C) and a corresponding witness wn, and can efficiently
generate a succinct computationally-sound proof for (C, an, n) given (RAM) access to its state.
We call such a proof-system an IVC with stateful prover. We require standard completeness and
soundness: a verifier accepts an honestly-generated proof string with probability 1 and rejects a
proof for any non-instance with probability all except negligible in λ.

Applying the transformation over our tree PCP we obtain an IVC with stateful prover where
both the proof length and the complexity of the prover are proportional to nγ .

Corollary 1.6 (IVC with Stateful Prover in the ROM). For any γ > 0, there exists an IVC with
stateful prover in the random oracle model, where a proof for (C, a, n) has length nγ · poly(λ, |C|)
and verification takes time nγ ·poly(λ, |C|). At time-step n, the prover runs in time nγ ·poly(λ, |C|)
while maintaining a state of size n · poly(λ, |C|, log(n)).

To the best of our knowledge, this is the first realization of any natural relaxation of IVC that
is provably secure in the random oracle model. Existing evidence suggests that relaxing the model
is necessary to obtain such a result [CL20, HN23, BCG24].

1.3 Incremental Proofs

Tree PCPs are distinct from Incremental PCPs by Naor, Paneth and Rothblum [NPR19]. In an
incremental PCP, the proof’s symbols change as the computation evolves but they do so separately.
That is, each symbol “updates itself” independently of other symbols. In contrast, in a tree PCP
symbols never change and the proof is updated by appending new symbols to it.

Closer to tree PCPs is Valiant’s notion of incrementally verifiable computation (IVC) [Val08].
An IVC is a cryptographic proof system in which one can succinctly prove that a long computation
was done correctly. The requirement is that the proof can be efficiently updated as the computation
proceeds, in time independent in the length of the computation thus far.

1Merkle trees can be made “incremental” using standard techniques.

5

Such stringent efficiency requirements put a hard limit on the proof length and hence also on
its soundness guarantee, requiring it to be merely “computational”: no polynomial-size attacker
can find an accepting proof of a false statement. In contrast, tree PCPs are unconditionally sound.

Valiant demonstrated how IVC could be realized via a technique called proof merging. Later,
Bitansky et al. [BCCT13] relied on recursive composition of proofs. Soundness was based on strong
assumptions on the proofs, and postulated access to an idealized random oracle. Since the random
oracle ultimately has to be instantiated by a function with short description, these approaches run
into circular reasoning. Later works suggest that the standard random oracle model is not sufficient
for incremental proofs. They rule out not just explicitly recursive designs, but any IVC that either
satisfies some natural constraints (e.g. zero-knowledge) [CL20, HN23] or can prove computations
that themselves have access to the random oracle (so-called relativized IVC) [BCG24].

More recent works [DGKV22, PP22] construct IVC from falsifiable assumptions for deterministic
computations, but requires a heavy use of expensive “public-key” operations.

Incremental verifiability also makes an appearance in [CHK+19], where it is shown how to
construct a procedure that, given a SAT instance over n variables, counts the number of satisfying
assignments. This is accomplished via an exponential sequence of small steps, each computable in
time poly(n). Incremental verifiability in this context means that each intermediate state includes a
sumcheck-based proof of its correctness, and the proof can be updated and verified in time poly(n).

1.4 Further Research

The tree PCPs we build for CktReach capture non-deterministic space-bounded computations.
Their proof length is almost optimal and their sublinear verification complexity grows with nγ .
This is inferior to state-of-the-art standard PCPs [BS08, Din07], where verification complexity is
polylogarithmic in n, for a comparable soundness error.

A first question is whether the incrementality of tree PCPs can be attained with a smaller
cost in complexity. Efficient constructions of standard PCPs typically require PCP composition
techniques, which are not directly applicable to the incremental setting, or locally testable tree
codes with a more efficient local test. Such codes often take the form of m-fold tensor products,
for a super-constant m. In the incremental setting of tree codes, m = ω(1) would require to
somehow increase the dimensionality of the tensor tree code over time, which seems to necessitate
new techniques beyond those used in [MRR25].

Another path for improved efficiency is via “purely algebraic”, more “PCP-friendly”, tree codes
(see Section 2.3) that could facilitate more straight-forward tree PCPs. While constructing such
codes seems to be challenging (see, e.g., [Pud13]), we hope that their application to tree PCPs will
motivate further research in this direction.

Perhaps the most intriguing question is whether tree PCPs can realize efficient verification of
broader classes of computations beyond space-bounded. One can think of a model where the circuit
C is replaced by a function that has local random-access to the path of configurations (a0, . . . , an)
and its witness (w1, . . . , wn). Less generally, one can consider special cases where only specific yet
meaningful local access patterns are allowed.

In the notion of tree PCPs we consider, the computation at time t is allowed access only to
“memory locations” t and t−1 (hence space-bounded). Our construction realizes this access pattern
by embedding it on a more expressive access graph. Thus, it already allows access patterns beyond
what is captured by the construction (these are defined by the shifts Γi – see Fig. 3 and Section 5.2).
Extending the functionality further requires new techniques for enforcing a more general structure
of consistency constraints across witnesses in the different time-steps.

6

2 Technical Overview

Our goal is to build a tree PCP for (C, a, n) ∈ CktReach (see Definitions 1.1 and 1.4 and Eq. (1)).
Since a PCP verifier reads only few locations in the proof, a PCP at the very least necessitates a
redundant encoding of the witness, where any local change in the witness results in global change
in the proof. Whereas traditional PCPs rely on standard error-correcting codes, tree PCPs rely on
tree codes, which are well-suited to our incremental setting.

2.1 The BFLS Blueprint

We follow the “BFLS blueprint” for constructing PCPs [BFL90, BFLS91] (see [Sud04]):

(i) The statement is reduced to the satisfiability of many local constraints, akin to the way in
which an NP statement reduces to a conjunction of 3-CNF clauses. A witness to the statement
is an assignment A that satisfies all local constraints.

(ii) The proof consists of a redundant encoding Ã of A, using an error-correcting code. This
amplifies any divergence from a satisfying assignment, facilitating efficient verification: if an
assignment breaks even one of the local constraints, its encoding breaks many of them.

(iii) The code used to encode the witness possesses structure (typically algebraic) that allows
evaluating the local constraints “underneath” codewords. By making only few queries to Ã,
it is possible to compute any symbol in the codeword Ẽ that encodes E – the evaluations of
the local constraints over A: E(i) = 0 if and only if the ith constraint is satisfied by A.

(iv) The PCP verifier performs the following two checks:

1. Test that Ã is close enough to a codeword. For this, the code is required to be locally
testable, where proximity of a word to the code can be tested by reading few locations.

2. Test that Ẽ encodes zero evaluations. This is performed by a zero test PCP, which is
usually based on the sumcheck protocol [LFKN92]. The soundness of the zero test is
guaranteed whenever Ẽ is a codeword, and relies on the minimum distance of the code.2

Notice the gap between the soundness guarantee of the local test that Ã is close to a codeword,
and the requirement for soundness of the zero test that presumes Ẽ, which emerges from Ã via (iii),
is an exact codeword. To bridge this gap, the code is often required to satisfy some notion of local
correctability, namely that the “correct” value at any location in a slightly-corrupted codeword can
be recovered by reading additional few random locations.

2.2 The Tree PCP Outline

To adapt the above outline to tree PCPs, the following ingredients are required:

• An incremental representation of a CktReach statement by a conjunction of local con-
straints. Incrementality here means that extending the statement by a new computation step
entails adding few new constraints to the current set of constraints.

• A tree code that is locally testable and locally correctable, and of structure that allows evalu-
ating the local constraints underneath codewords (à la (iii)).

2In actuality, E is not expected to be the all-zero string but rather to contain zeros only in a set of relevant
locations where constraint evaluations reside. Otherwise, making few random queries to Ẽ and checking they are all
zeros would have sufficed for small-enough soundness error, due to the distance of the code.

7

• A sumcheck protocol for the locally testable tree code, which can be converted into a “zero
test tree PCP” where a proof for a codeword can be extended to obtain a proof for any
extension of the codeword, akin to the incrementality of tree PCPs.

Our starting point is a description of (C, a, n) ∈ CktReach as a conjunction of local constraints
over n input triplets At = (at−1, at, wt) ∈ {0, 1}3s to C such that: (1) A1 and An contain valid initial
configuration a0 = 0s and, respectively, final configuration an = a, (2) At is a valid transition under
C for any t = 1, . . . , n, and (3) At−1 and At assign consistent values to at−1 for any t = 2, . . . , n.
This suggests a tree PCP outline, which we sketch in Fig. 1.

The Tree PCP Outline

The Proof:

1. Let At = (at−1, at, wt) ∈ {0, 1}3s and denote by Ai : [n]→ F the column Ai(t) = At(i).

2. The proof contains
Ã1 = TC(A1), . . . , Ã3s = TC(A3s).

The Verifier:

1. Using local testability, verify that for all i = 1, . . . , 3s, Ãi is close enough to the code TC.

2. Using a zero test, verify that the unique closest codewords encode A1, . . . , A3s that satisfy:

2.1 (Endpoints) (A1(1), . . . , As(1)) = 0s and (As+1(n), . . . , A2s(n)) = a.

2.2 (Transition) For all t = 1, . . . , n, C(A1(t), . . . , A3s(t)) = 1.

2.3 (Consistency) For all i = 1, . . . , s and t = 2, . . . , n, Ai(t) = As+i(t− 1).

Figure 1: Tree PCP for CktReach instance (C, a, n), with respect to path p = (w1, a1, . . . , wn, an).

Given locally testable tree codes have been constructed in prior work [MRR25], it seems that
to realize the outline from Fig. 1 we only need to make them locally correctable and to devise a
corresponding sumcheck protocol that can be turned into a zero test.

Both ingredients can be derived somewhat generically in the standard setting, for any locally
testable block code that builds on tensoring : Gur et al. [GRR20] prove that any tensor code
already satisfies a relaxed notion of local correctability that is sufficient for PCPs [BGH+06], and
Meir [Mei13] shows that the classic sumcheck protocol [LFKN92] can be applied to any tensor
code. Since the code from [MRR25] also relies on tensoring, albeit of tree codes, we are able to
successfully adapt the respective results from the literature to locally testable tree codes.

In Section 4, we recall the locally testable tree code construction from [MRR25] and prove
that it satisfies relaxed local correctability (Lemma 4.9).3 Interestingly, using its relaxed local
correctability, we are able to show that the code is strongly locally testable (Proposition 4.10),
namely that there exists a local test that rejects any non-codeword with non-zero probability.
This is an improvement compared to [MRR25], where we prove local testability in a weak sense,
guaranteeing that a non-codeword is rejected with non-zero probability only if its distance from

3In fact, we consider an intermediate construction from [MRR25] that does not satisfy tree distance but only a
weaker notion of distance that suffices for our analysis. Our proofs of relaxed local correctability and strong local
testability extend, however, to the locally testable tree codes of [MRR25] that satisfy (probabilistic) tree distance.

8

the code exceeds a certain threshold. Notably, strong local testability is crucial for the soundness
analysis of the tree PCP. See further discussion in Section 4.2.

In Section 6, we build an interactive sumcheck protocol for tree code tensors (Section 6.1) then
show how to convert it to a zero test proof oracle that is “incremental” (Lemma 6.1), which is
important for obtaining a tree PCP.

While locally testable tree codes that are also locally correctable and equipped with a zero test
take us close to tree PCPs, we are still missing one crucial component. Recall that we additionally
want the verifier to “evaluate” the local constraints from Fig. 1 over the assignments A1, . . . , A3s

given their encodings Ã1, . . . , Ã3s ((iii)). To that end, the set of local constraints and the encod-
ings must be compatible in structure. In the rest of the overview, we explain how we reach this
compatibility, and point the reader to Section 5 for details.

2.3 PCP-Friendly Tree Codes?

BFLS PCPs build on low-degree extensions, facilitating algebraic techniques to evaluate constraints
over the encoded messages, as the constraints are typically arithmetized and made algebraic.

For simplicity, think of the univariate special case of low-degree extensions, aka Reed-Solomon,
as an example. These are multiplication codes [Mei13], where the encoding of the point-wise
product of two words A1 and A2, is simply the point-wise product of the codewords Ã1 and Ã2.
This, besides linearity, allows to evaluate any low-degree polynomial underneath codewords, in
a point-wise manner: by reading few locations from A1, . . . , A3s, the verifier can compute any
location in the codeword Ẽ that encodes E(t) = P (A1(t), . . . , A3s(t)), where P is any degree-3
polynomial. Consequently, using standard arithmetization techniques and assuming C is a 3-CNF
circuit w.l.o.g., the verifier can evaluate the transition constraints (2.2) as we require.

The same algebraic structure additionally allows to evaluate consistency constraints (2.3): for
instance, due to the affine invariance of Reed-Solomon codes, say over prime fields, a codeword that
encodes a shift of an assignment A, i.e. Â where Â(t) = A(t− 1), can be obtained by (circularly)
shifting the codeword Ã. This is sufficient since the consistency constraint between Ai and As+i

(see 2.3) can be written as E = Ai − Âs+i ≡ 0.
Things do not work that easily with tree codes: unlike with block codes, explicit “purely al-

gebraic” tree code constructions with reasonable alphabet size are not known to exist, let alone
ones that are also locally testable . The only explicit algebraic tree codes we are aware of either
have alphabet size that grows exponentially in the message length4 [Pud13, CHS18] or are heuris-
tic [MS14, BCN21], namely where minimum distance is only conjectured. Even if we are willing to
compromise on the latter, we do not know how to exploit the algebraic structure therein for our
goals.

2.4 The Base Tree Code

In light of the above, we turn to rely on a simple, generic, tree code construction by Schulman [Sch94]
that can be based on any family of block codes that allows encoding messages of any length. The
hope is that if we instantiate the construction with algebraic block codes, e.g. Reed-Solomon, it
inherits some of their desired properties and that these further propagate to the locally testable
tree codes obtained by plugging-in the construction in the framework of [MRR25].

A codeword in Schulman’s tree code is a concatenation of codewords from the underlying family
of block codes, where each “block-codeword” encodes a certain chunk of the message.

4While the code from [CHS18] is based on an algebraic design, the final construction with small alphabet involves
combinatorial machinery that breaks a potentially useful structure and even makes the code non-linear.

9

The codeword corresponding to a length n message consists of ⌈log(n)⌉ “threads”, where the
kth thread, for k = 0, . . . , ⌈log(n)⌉, contains encodings of consecutive chunks of length 2k in the
message (see Fig. 2). Note that a codeword in the tree code might contain only part of some
block-codewords, which will be eventually entirely included as the codeword grows.

c0

c1

c2

c3

Figure 2: Encoding a message of length n = 10 with Schulman’s tree code [Sch94]. The codeword
(red) consists of ⌈log n⌉ = 4 threads, where thread ck, for k = 0, . . . , 3, contains block-codewords
(blue) that encode chunks of the message of length 2k. Any such block-codeword is split into 2k

equal-length symbols (black) that are added one column at a time to the codeword.

Since a codeword in Schulman’s construction is simply a concatenation of block-codewords,
if the underlying block code is a linear multiplication code, then so is the obtained tree code.
Consequently, the transition constraints can be evaluated under the tree code as described above,
namely by evaluating low-degree polynomials locally, in a point-wise manner, within each of the
block-codewords. We show this formally in Section 5.1.

2.5 Evaluating Consistency

Verifying the consistency constraints turns out to be much more challenging. In fact, a substantial
part of the technical work put to achieve the main result of this paper is dedicated to this goal.
In what follows we provide a simplified account, omitting many of the moving parts, and refer the
reader to Section 5.2 for more intuition and formal details.

The difficulty in evaluating the consistency constraints stems from the fact that, in contrary to
the transition constraints which are “point-wise”, the consistency constraints involve values from
different locations in different assignments. Recall that evaluation can be done by shifting an
assignment A underneath its encoding by t 7→ t − 1 to obtain an encoding of Â (recall Â(t) =
A(t − 1)). These shifts are not directly compatible with the structure of the locally testable tree
codes we consider. Roughly speaking, there are two sources of incompatibility corresponding to two
“combinatorial layers” in the code: First, the block structure of Schulman’s tree code (Fig. 2) and,
second, the “flattened tensor” structure of the locally testable codes from [MRR25]. (Recall we do
not directly use the tree code by Schulman to encode the assignments in the tree PCP since the
code is not locally testable. The tree code is instead used as the base code to the locally testable
tree code construction of [MRR25].)

Naively shifting the assignment underlying a codeword Ã from Schulman’s tree code entails
“moving around” information across different block-codewords. The presumed minimum distance
of the underlying block codes makes this impossible to do with a small number of queries. Instead,
we implement the shifts t 7→ t − 1 by embedding them in a collection of different shifts (i.e.
permutations) Γi : N → N over the coordinate space of A, described in Fig. 3. The shifts Γi are
compatible with the combinatorial structure of the tree code in that they can be performed by first
permuting blocks then permuting coordinates within each of the blocks (but never across different
blocks). The latter is possible with existing algebraic block codes, specifically Reed-Solomon over
extensions of GF(2) (Definition 4.14), which we use to instantiate the tree code construction.

10

Γ1

1
(000)

2
(001)

3
(010)

4
(011)

5
(100)

6
(101)

7
(110)

8
(111)

Γ2

1
(000)

2
(001)

3
(010)

4
(011)

5
(100)

6
(101)

7
(110)

8
(111)

Γ3

1
(000)

2
(001)

3
(010)

4
(011)

5
(100)

6
(101)

7
(110)

8
(111)

Figure 3: The shifts Γ1,Γ2 and Γ3 over {1, . . . , 8}. In red is the embedding of t 7→ t−1, namely the
edges going out from t satisfying Γi(t) = t − 1 (the set Λi defined in Section 5.2). In parentheses
are the coordinate labels, denoted b(t) in Section 5.2.

We note that the shifts Γi are similar to permutations that appear in prior work on PCPs
in a similar context, where routing techniques are used to design well-structured consistency con-
straints [Spi95, PS94, BGH+06].

One issue that arises in shifting an encoded assignment A is that it might involve block-
codewords that appear only partially in the codeword Ã (see Fig. 2). We handle this by letting
the prover write down the missing parts “in advance” to the PCP. These parts are not included
in the codeword yet and, as such, are not accounted for in the local test performed by the verifier
beforehand. Therefore, we cannot guarantee that they contain correct values. Nevertheless, we
are able to prove that the shift evaluation is “sound”, in the sense that the verifier obtains the
expected encoding of the shifted assignment, or something very close to it, even if the prover acts
maliciously (Lemma 5.11).

The second main challenge in evaluating the consistency constraints has to do with the com-
binatorial structure underlying the locally testable tree codes of [MRR25]. The transformation in
[MRR25] takes a base (linear) tree code and makes it locally testable in two steps:

(i) Tensoring : The m-fold tensor product of the tree code, for any m > 1, defines an “m-
dimensional tree code”, where messages are viewed as m-dimensional rectangles and are en-
coded to m-dimensional codewords by an encoding function that is “online in m dimensions”.

(ii) Flattening : To obtain a tree code with an online encoding function in the standard sense, the
tensor tree code is flattened by a monotone embedding of the high-dimensional coordinate
space Nm to the one-dimensional coordinate space N (defined in Fig. 4, illustrated in Fig. 5).

The ability to shift messages encoded under the base code translates, not without subtleties,
to the ability to shift m-dimensional messages encoded under the tensor code along any of the di-
mensions (Lemma 5.12). While this is sufficient to shift the flattened encoding of an assignment at
most coordinates (Lemma 5.13), for many values of t, the shift t 7→ t− 1 in a (one-dimensional) as-
signment corresponds to a “jump” in its lifting to m-dimensions, for the m-dimensional coordinates
where t and t− 1 are embedded are not at all adjacent (Lemma 5.14).

We are nevertheless able to express the consistency constraints as consistency between adjacent
coordinates in the m-dimensional tensors (Lemma 5.15). This is done by introducing auxiliary
variables that act as “bridges” in-between, and are also encoded using the locally testable tree code
and added to the tree PCP next to the assignments.

3 Preliminaries

For n ∈ N, we denote [n] = {1, . . . , n} and the nth harmonic number by Hn =
∑n

i=1 1/i. For a
subset J ⊆ [m], we denote by 1J ∈ {0, 1}m the binary vector that is 1 at any j ∈ J and 0 at any

11

j /∈ J . Form-dimensional coordinates t = (t1, . . . , tm) and t′ = (t′1, . . . , t
′
m), we write t ≥ t′ if tj ≥ t′j

for all j. A (possibly infinite) set I ⊆ Nm is a rectangle if it can be written as I = I1 × · · · × Im.
We often view a word w ∈ Σn as a function w : [n]→ Σ, where w(t) is the tth symbol in w and,

more generally, m-dimensional tensors w ∈ Σn1×···×nm as w : [n1]× · · · × [nm]→ Σ. For a function
f : I → Σ, we denote by dom(f) = I the domain of f and write |f | = |I| · log |Σ|. For a set S, we
denote by fS : S → Σ the restriction of f to S ∩ dom(f).

We say that a function is efficiently computable if there exists an algorithm that computes it in
time polynomial in the length of its input. Algorithms in this paper are often oracle-aided, namely
they are given access to an oracle. We assume algorithms always take the size of their oracles as
input and omit this from the notation.

We say that a function ϵ : N → R+ is negligible if, for any constant c ∈ N, it holds that
ϵ(n) = o(1/nc).

3.1 Incremental Ensembles

For functions f, g, where dom(f) ⊆ dom(g), we denote f ⪯ g and say f and g are consistent, if
g(t) = f(t) for all t ∈ dom(f). We use this notation particularly for words, namely functions over
coordinates [n] or, more generally [n1] × · · · × [nm], where in such a case we say that f is a prefix
of g. For f ⪯ g, we denote by g|f the restriction of g to dom(g) \ dom(f) and, more generally for
f1, . . . , fr ⪯ g, we let g|f1,...,fr denote the restriction of g to dom(g) \ (

⋃
j dom(fj)).

We consider ensembles of functions that associate any x ∈ Γn1×···×nm with a function fx and
are monotone in the sense that a prefix of x is always associated with a prefix of fx.

Definition 3.1 (Monotone ensemble). An ensemble of functions

{fx | x ∈ Γn1×···×nm , nj ∈ N ∀j}

is monotone if for any x ⪯ x′ it holds that fx ⪯ fx′.

We are interested in cases where fx can be incrementally computed.

Definition 3.2 (Incremental Ensemble). We say that a monotone {fx} is (T, L)-incremental if for
any x : [n1]×· · ·× [nm]→ Γ, letting xj denote the restriction of x to [n1]×· · ·× [nj−1]×· · ·× [nm]
and fj := fxj , it holds that fx|f1,...,fm is of size at most L(n1, . . . , nm) over Γ and there exists
a deterministic algorithm that computes it in time T (n1, . . . , nm) given x(n1, . . . , nm) and oracle
access to f1, . . . , fm.

3.2 Tree Codes

A code over an alphabet Σ is a subset of strings, namely codewords, C ⊆ Σ∗. Typically, a code is
associated with a 1-1 encoding function from a message space of size |C| to C. The standard notion
of codes is that of block codes, where all codewords are of the same length.

Central to our work is the notion of tree codes [Sch93]. These are infinite codes that exhibit an
online encoding function.

Definition 3.3 (Tree Code). A tree code over alphabet Σ = {Σn} is an infinite collection of
subsets TC = {TCn ⊂ (Σn)

n}n∈N, where, for any n ∈ N, it holds that Σn−1 ⊆ Σn and, for any
codeword (c1, . . . , cn) ∈ TCn it holds that (c1, . . . , cn−1) ∈ TCn−1.

12

We often define a tree code via an injective encoding function which, overriding notation, we
denote by TC = {TCn : Γn → Σn}. The function encodes a message (x1, . . . , xn) ∈ Γn by

TC(x1, . . . , xn) = (TC1(x1),TC2(x1, x2), . . . ,TCn(x1, . . . , xn)).

The corresponding code is {TC(x) | x ∈ Γ∗} and its rate is defined as ρ(n) = log |Γ|/ log |Σn|. Note
that the codewords of a tree code with a well-defined encoding function make a monotone ensemble
of functions (Definition 3.1).

We say that tree code with an encoding function TC = {TCn} is systematic if Σn ⊆ Γ × Σ′n
for some Σ′n and the nth codeword symbol cn = TCn(x1, . . . , xn) is always of the form (xn, c

′
n). We

refer to the first part in any cn ∈ Σn, which is over Γ, as the systematic part.
We sometimes work with tree codes where there is no well-defined encoding function yet it is

always the case that there exists an input alphabet Γ where for any message x ∈ Γn, there exists
a well-defined set of codewords TC(x) that encode x (Remark 4.12) and, additionally, for any
codeword c ∈ TC there exists a well-defined message x that satisfies c ∈ TC(x). In this case, we
say that the code is systematic if the nth symbol of any codeword c ∈ TC(x) is of the form (xn, c

′
n).

We will always assume in this work that, given a word w ∈ Σn, it is possible to efficiently tell (in
time polynomial in n) if w ∈ TC and, if so, to efficiently find the message x satisfying w ∈ TC(x).
All of the tree codes that we consider satisfy this property.

Tree codes inherently fail to achieve Hamming distance, which is the standard in coding theory.
The appropriate notion for tree codes is tree distance, which measures (relative) Hamming distance
between two words starting from their first disagreement.

Definition 3.4 (Tree Distance). Let Σ be an alphabet and n ∈ N. Let w,w′ ∈ Σn and let i∗ =
min{i : wi ̸= w′i} (and i∗ = 0 when w = w′). We define the tree distance between w and w′ as

∆T(w,w
′) = ∆H(w≥i∗ , w

′
≥i∗),

where ∆H denotes relative Hamming distance and w≥i∗ the suffix of w starting at position i∗.

We define linear tree codes similarly to [Pud13]. This is a special case of linear tree codes as
sometimes defined in the tree code literature (e.g. [CHS18], where codes over general rings, not
necessarily vector spaces, are considered) and equivalent to the notion of vector linear tree codes
from [MRR25].

Definition 3.5 (Linear Tree Code). Let F = {F(n)} denote a sequence of finite fields where F(n−1)
is a subfield of F(n) for all n ∈ N. Let L : N→ N. A linear tree code over F is a tree code with input
alphabet Γ = F(0) and output alphabet Σn = F(n)L(n), such that for any n ∈ N, any c, c′ ∈ TCn

and any α, β ∈ F(n), it holds that α · c+ β · c′ ∈ TCn.

We often use F to denote the finite subfield F(n), rather than the sequence of fields, when n
is clear from context. The following remark gives a characterization of any linear tree code as an
infinite collection of linear block codes, of increasing block-length, each with block lower-triangular
generator matrix.

Remark 3.6. Let TC = {TCn ⊂ (F(n)L(n))n} be a linear tree code over F = {F(n)} with a well-
defined encoding function. Then, for any n ∈ N, TCn is isomorphic (up to padding with zeros) to
a linear block code of dimension n and length L(n) · n that has a block lower-triangular generator
matrix Gn ∈ F(n)(L(n)·n)×n, where Gn−1 ⪯ Gn

13

While tree distance is a powerful notion and captures the desired distance guarantee in many
tree code applications, it is often difficult to work with. In particular, tree distance is not formally
a distance function (i.e. a metric) as it does not satisfy the triangle inequality. In our analysis, we
mostly use a different distance notion called suffix distance [MRR25], which is actually a distance
function, can be usefully described as probability of disagreement at a random location (similarly
to relative Hamming distance), and is strongly related to tree distance (Lemma 3.8). We present a
definition of suffix distance which generalizes over high-dimensional words.

Definition 3.7 (m-dimensional Suffix Distance). Let Σ be an alphabet. Define Hn =
∑n

j=1 1/j
for any n ∈ N and Hn1,...,nm =

∏
j Hnj for n1, . . . , nm ∈ N. For any m ∈ N, n1, . . . , nm ∈ N and

coordinate t = (t1, . . . , tm) ∈ [N], we define

σn1,...,nm(t) =
1

Hn1,...,nm

·
m∏
j=1

1

nj − tj + 1
.

Notice that σn1,...,nm =
⊗m

j=1 σnj and, since σn is a probability density function, then so is
σn1,...,nm. We sometimes override notation and use σn1,...,nm to denote the corresponding distribu-
tion over [n1]× · · · × [nm].

Let w,w′ ∈ Σn1×···×nm. We define the suffix distance between w and w′ as

∆S(w,w
′) = Pr

t←σn1,...,nm

[wt ̸= w′t].

We further define ωS(w) = ∆S(w, 0) to be the suffix weight of w.

The following lemma (special case of [MRR25, Lemma 5.2])5 gives a lower bound on the (one-
dimensional) suffix distance between any two words by the Hamming distance in any of its suffixes.
This immediately implies a connection between suffix distance and tree distance.

Lemma 3.8 (Suffix Distance from Tree Distance). Let n ∈ N and w,w′ ∈ Σn. Assume there exists
i∗ ∈ [n] such that ∆H(w≥i∗ , w

′
≥i∗) ≥ δ. Then, it holds that6

∆S(w,w
′) ≥ 1

Hn
·
(
δ − o(1)

)
,

where, recall, Hn is the nth Harmonic number. In particular, for any w,w′ ∈ Σn,

∆S(w,w
′) ≥ 1

Hn
·
(
∆T(w,w

′)− o(1)
)
.

4 The Tree Code

Locally testable tree codes were built in [MRR25] using code tensoring, which is a general strategy
to obtain local testability in the standard setting of block codes [BS04, Mei09, Vid15, KMRS17].
Tensor tree codes are defined by the tensor product operation over linear tree codes.

Definition 4.1 (Tensor Product of Tree Codes). Let TC = {TCn ⊂ (F(n)L(n))n} be a linear tree
code over F = {F(n)} and let m ∈ N. The m-fold tensor product of TC, which we denote by TCm,
is defined as the ensemble TCm = {TCm

n1,...,nm
⊂ F(n)L(n1)n1×···×L(nm)nm | n = maxj nj} where, for

any n1, . . . , nm ∈ N,

TCm
n1,...,nm

= Span
(
{c1 ⊗ · · · ⊗ cm | ∀j, cj ∈ TCnj}

)
.

5The statement in the lemma from [MRR25] refers to a weaker lower bound of δ/Hn−o(1), but their proof actually
implies the above stronger version.

6Asymptotic notation is with respect to n.

14

We sometimes shorthand L(nj) by Lj and L(n1) × · · · × L(nm) by Lm, when n1, . . . , nm are
clear from context. In particular, we sometimes denote the alphabet of TCm by FLm

.
Similarly to a standard tensor code, an alternative definition for a tensor tree codes is the set

of all tensors where the restriction to any column parallel to any of the dimensions is a codeword
in the base code.

Remark 4.2 (Combinatorial Characterization of Tensor Tree Codes). Any c : [n1]× · · · × [nm]→
FL1×···×Lm is in TCm if and only if any restriction of c to a column over F is a codeword in TC.
Formally, if c is viewed as a function from [L1n1] × · · · × [Lmnm] to F, then, for any j ∈ [m]
and any i1, . . . , ij−1, ij , . . . , im, where ij′ ∈ [Lj′nj′], the column d : [Ljnj] → F where d(i) =
c(i1, . . . , ij−1, i, ij+1, . . . , im) is in TC, when viewed as d : [nj]→ FLj .

The above characterization induces an “incremental” encoding algorithm for tensors of tree
codes with explicit encoding function that, to compute a symbol in the codeword at a given co-
ordinate (n1, . . . , nm) reads only n1 + · · · + nm codeword symbols from coordinates (t1, . . . , tm) ≤
(n1, . . . , nm). The algorithm is obtained by applying the encoding algorithm of TC along each of
the m directions, one at a time, to compute the last symbol in the axis-parallel column passing
through (n1, . . . , nm).

Remark 4.3 (Efficient Encoding of Tensors). Let TC : Fn → FL(n)n be an encoding function
of a linear tree code where computing the last symbol in a codeword of length n given the first
n − 1 codeword symbols takes time T (n). Let c : [n1] × · · · × [nm] → FL1×···×Lm be a codeword
in TCm and denote n = maxj nj. There exists an algorithm that reads m · n1/m locations from
([n1]×· · ·×[nm])\{(n1, . . . , nm)} in c, runs in time m·(

∏
j′ ̸=j Lj′)·T (n), and outputs c(n1, . . . , nm).

Consequently, the codewords of TCm form an (O(L(n)mT (n)), L(n)m)-incremental ensemble
(Definition 3.2).

Additionally, if the underlying encoding under TC is systematic then so is the obtained encoding
under TCm.

Tree distance in the base code TC translates into suffix distance in TCm (Definition 3.7).

Proposition 4.4 (Lemma 5.3 in [MRR25]). If TC has constant tree distance δ, then TCm has
suffix distance

(
(δ−o(1))/Hn

)m
over words of length n1×· · ·×nm, where n = maxj nj and, recall,

Hn is the nth harmonic number.

Additionally, [MRR25, Corollary 5.5] show the existence of a tester that can tell whether a given
m-dimensional word is in TCm, by reading a sublinear number of locations from it. The tester
achieves a strong notion of local testability w.r.t. suffix distance, where the rejection probability of
any non-codeword grows with its distance from the code, even if the latter is arbitrarily small.

Theorem 4.5 (Local Testability of TCm). Let m ∈ N and let TC be a linear tree code over F
with constant tree distance. Then, there exists ϵ(n) = Ω(1/ logm(n)) and a tester T that has oracle
access to a word w : [n1]× · · · × [nm]→ FL(n1)×···×L(nm), and satisfies the following properties:

– (Completeness) If w ∈ TCm, then Pr[Tw = 1] = 1.

– (Soundness) Pr[Tw = 0] ≥ ϵ(n) ·∆S(w,TC
m) for any w, where n = maxj nj.

– (Query Complexity) T makes at most O(n2) queries to w.

15

Although the tensor product of a linear tree code TCm is a well-defined code over FNm
, it

does not directly constitute a tree code (unlike the tensor product of block codes which is a block
code). In particular, the above definition does not induce an online encoding function in the sense
required by tree codes, but only a more general notion of “online encoding in m dimensions”, where
codeword symbols can be encoded given the previous message symbols along all m dimensions.

The tensor product TCm can be “flattened” and turned into a tree code by embedding the
coordinates of Nm onto the one-dimensional timeline, namely N.

We say that a 1-1 mapping φ : N → Nm is monotone if φ(t) ≤ φ(t′) implies t ≤ t′ for all
t, t′ ∈ N. (Recall (t1, . . . , tm) ≤ (t′1, . . . , t

′
m) iff tj ≤ t′j for all j.) Note that such a mapping defines

a full order over the coordinates in Nm that is consistent with the standard partial order over Nm.
While any monotone mapping φ can be used to make TCm a tree code, [MRR25] choose

a specific mapping with useful structure that preserves the local testability of TCm, yielding a
flattened code that is locally testable. The mapping is natural and orders the coordinates in Nm

by their L∞-norm, where ties are resolved recursively over lower dimensions.
Concretely, let φm denote the mapping to m dimensions (we omit m when it is clear from

context). Then, φ1(t) = t is the only monotone mapping from N to itself. For any n ∈ N, φ2 maps
{1, . . . , n2} to the square of coordinates t = (t1, t2) ∈ N2 satisfying L∞(t) ≤ n, i.e. [n]2, as follows:
First, recursively map {1, . . . , (n−1)2} to the square [n−1]2. Then, map {(n−1)2+1, . . . , n(n−1)}
to the row of coordinates {n}× [n− 1] using φ1 and, next, {n(n− 1)+1, . . . , n2− 1} to the column
[n− 1]× {n} using φ1 again. Lastly, map n2 to the corner (n, n). See the top row in Fig. 5.

Over 3 dimensions, φ3 is defined similarly, where the coordinates in [n]3 are covered by first
mapping recursively into [n−1]3, then using φ2 to map into the three planes of coordinates adjacent
to [n−1]3, one at a time in a lexicographic order, then using φ1 to map into the three lines adjacent
to these planes. Lastly, n3 is mapped to (n, n, n). See the bottom row in Fig. 5

In Fig. 4, we formally define φm by describing a recursive procedure that traverses over Nm and
maps each coordinate to its order in the traversal (determined by the value of a global counter that
increases by 1 every time it maps a coordinate). Actually, we describe a procedure that traverses
over [n]m, for any n ∈ N, and defines a mapping φm

n : [nm] → [n]m. φm is uniquely defined by
the φm

n since the latter are consistent. We stress that both φ and φ−1 are computable in time
polynomial in the length of their input (and polylogarithmic in the length of the codeword).

Definition 4.6 (Flattening of a Tensor Tree Code [MRR25]). Let TC be a linear tree code over
F and let TCm be its m-fold tensor tree code. Let φ : N → Nm be the mapping from Fig. 4. The
flattening of TCm, denoted by TCm, consists of all w ∈ (FLm

)∗ for which there exists W ∈ TCm

such that W (φ(t)) = w(t) for all 1 ≤ t ≤ |w|.

Proposition 4.7 ([MRR25]). For any m ∈ N and any linear tree code TC, the flattened tensor
code TCm is a tree code. Further, if TC has an explicit encoding function, then so does TCm.

We note that despite TCm being syntactically a tree code, it does not attain tree distance. In
[MRR25], TCm is bootstrapped to a code that has (probabilistic) tree distance by relying on the
suffix distance in TCm and using further machinery. For our tree PCPs, tree distance by itself is
not necessary and, therefore, we can use TCm directly. Consequently, our PCP analysis is largely
based on the minimal suffix distance in the underlying tensor code TCm.

A key property of the mapping φ, that in [MRR25] was crucial to convert Theorem 4.5 to a
local test for the flattened code TCm and will play an important role in our PCP construction, is
the fact that any flattened codeword can be represented as a merge of O(1) codewords in TCm. To
formalize, let us denote the m-dimensional coordinate set of a flattened codeword of length n by
Im(n) = {φm(t) | t ≤ n}. We omit m when it is clear from context, which is usually the case.

16

The Mapping φm
n : [nm]→ [n]m

0. Start a global counter i = 1.

1. For d = 0, . . . ,m− 1,

For all J ∈
(
m
d

)
in lexicographic order,

1.1. Let n
(0)
J ∈ Nm denote the coordinate that is n at j ∈ J and 1 anywhere else.

1.2. Let n
(1)
J ∈ Nm denote the coordinate that is n at j ∈ J and n− 1 anywhere else.

1.3. Map the next (n − 1)m−d integers to {t ∈ Nm | n(0)
J ≤ t ≤ n

(1)
J } recursively via

φm−d
n−1 over dimensions [m] \ J .

2. Map i 7→ (n, . . . , n) then increase i by 1.

Figure 4: The mapping φm = {φm
n } onto Nm used to flatten TCm in Definition 4.6. The lexico-

graphic order over
(
m
d

)
is the standard lexicographic order over representations of the subsets as

sorted strings in [m]d.

Proposition 4.8 ([MRR25]). For any n ∈ N and m ∈ N, there exists a collection of 2m rectangles
Ir = [nr1]× · · · × [nrm] such that Im(n) =

⋃2m

r=1 Ir and nrj ≤
⌈
n1/m

⌉
for all r and j. We call the set

{Ir} the rectangle cover of I(n) := Im(n) and denote it by Rect(n) := Rectm(n).

Notation. We introduce some notation related to tensor tree codes and their flattening, that
will facilitate exposition in the sequel. For a word w : [n] → Σ (typically from the codeword or
message space of TCm) and a rectangle I ⊆ I(n), we denote by wI : I → Σ the word defined by
wI(t) = w(φ−1(t)), where φ is the mapping from Fig. 4.

4.1 Local Correctability of Tensor Tree Codes

Gur et al. [GRR20] (building on [BGH+06]) define a relaxed notion of local correctability, where
the correction procedure is allowed to abort in case it detects that the given word is corrupt (i.e., is
not a codeword). This is sufficient in our setting since the codeword should never be corrupted in
an honest PCP. They additionally show that standard tensor codes are locally correctable in this
relaxed sense. In the following lemma, we adapt their proof to tensor tree codes, and show that
they are relaxed locally correctable w.r.t. suffix distance (Definition 3.7).

Lemma 4.9 (Relaxed Local Correctability of TCm). Let m ∈ N and let TC be a linear tree code
with constant tree distance δ. Then, there exists a corrector algorithm C that has oracle access to a
word w : [n1] × · · · × [nm] → FLm

and takes as input a coordinate (t1, . . . , tm) ∈ [n1] × · · · × [nm],
and satisfies the following properties:

– (Completeness) If w ∈ TCm, then Pr[Cw(t1, . . . , tm) = w(t1, . . . , tm)] = 1.

– (Soundness) There exists a negligible function ϵ such that, letting n = maxj nj, if ∆S(w, c) ≤
(δ/2Hn)

m for some c ∈ TCm, then

Pr
[
Cw(t1, . . . , tm) ∈ {c(t1, . . . , tm),⊥}

]
≥ 1− ϵ(n).

17

Figure 5: A visualization of the mapping φm, form = 2 andm = 3, over coordinates with L∞-norm
n = 9. In orange are the recursive calls to the mapping over lower dimensions, ordered from left to
right. A formal definition of φm is given in Fig. 4.

– (Query Complexity) C makes at most O(n · log3m(n)) queries to w.

Proof. We prove the lemma by induction. We assume that TCm−1 is a relaxed locally correctable
code with correction distance (δ/2Hn)

m−1 and show that TCm = TCm−1 ⊗ TC is relaxed locally
correctable as well, with correction distance (δ/2Hn)

m and a small blow-up in query complexity.
Given access to w, the corrector for TCm performs the following:

1. Read the entire “row” that contains (t1, . . . , tm), namely w′ : [nm]→ FLm
defined by w′(x) =

w(t1, . . . , tm−1, x). If w
′ /∈ TC, output ⊥ and abort.

2. Repeat the following λ = log3(n)/δ times:

2.1 Sample i← σnm (recall this is the suffix distribution, see Definition 3.7) and let wi : [n1]×
· · · × [nm−1]→ FLm

be the “column” defined by wi(x1, . . . , xm−1) = w(x1, . . . , xm−1, i).

2.2 Invoke the corrector of TCm−1 over wi with input coordinate (t1, . . . , tm−1) to retrieve
a symbol yi.

2.3 If yi ̸= w′(i), output ⊥ and abort.

3. Output w′(tm).

Now, if w ∈ TCm, then w′ ∈ TC and wi ∈ TCm−1, implying yi = wi(t1, . . . , tm−1) = w′(i) for
all i by the completeness of the corrector for TCm−1.

If w′ /∈ TC, then the corrector aborts. Otherwise, if w /∈ TCm but w′ ∈ TC, let c′ be the
codeword row c′(x) = c(t1, . . . , tm−1, x). If w′ = c′, then the corrector either aborts or outputs
w′(tm) = c′(tm) = c(t1, . . . , tm). If w′ ̸= c′, then ∆T(w

′, c′) > δ by the distance of the code and, by
Lemma 3.8,

Pr
i←σnm

[w′(i) ̸= c′(i)] = ∆S(w
′, c′) ≥ δ/Hn.

Additionally, letting ci be the column ci(x1, . . . , xm−1) = c(x1, . . . , xm−1, i), then by assumption

Ei←σnm
[∆S(wi, ci)] = ∆S(w, c) ≤ (δ/2Hn)

m.

18

and, therefore, Pri←σnm
[∆S(wi, ci) ≥ (δ/2Hn)

m−1] < 1− δ/2Hn. Hence,

Pr
i←σnm

[w′(i) ̸= c′(i), ∆S(wi, ci) < (δ/2Hn)
m−1] ≥ δ/Hn − δ/2Hn = δ/2Hn. (2)

The probability that at least one i sampled by the corrector satisfies the two events in Eq. (2) is

at least 1 − (1 − δ/2Hn)
λ = 1 − e−Ω(log2 n). In such a case, by the soundness of the corrector for

TCm−1, yi is either ⊥ or c′(i) ̸= w′(i).
The query complexity of the corrector for TCm can be bounded by the recursive equation as

Q(m) = n+ λ ·Q(m− 1) = O(λm · n).

4.2 A Local Test for The Flattened Code

In [MRR25] we show that a flattened code TCm is locally testable by proving that if a word w of
length n is far from TCm in tree distance, then there exists a rectangle I in the rectangle cover
Rect(n) (Proposition 4.8) over which w is far from TCm in suffix distance. Since there is a constant
number of rectangles in Rect(n), a test for TCm can be then obtained by performing the local test
for TCm (Theorem 4.5) over each of the rectangles in Rect(n) separately.

Translating tree distance in w to suffix distance in the furthest rectangle, however, incurs a
significant loss in the distance. As a result, the test from [MRR25] is proven to catch a codeword
with non-zero probability only if it is far enough from the code. In particular, the test is not
known to realize strong local testability where non-zero rejection probability is required for any
non-codeword with arbitrarily little corruptions. In fact, it may be possible that a word w is
never rejected by the test although its distance from the code exceeds its error-correction radius,
in which case we cannot talk about a unique closest codeword to w. In contrary, a well-defined
closest codeword for any w that passes the local test is crucial to our PCP analysis.

The reason for this limitation in the [MRR25] test is that all rectangles in the cover of w might
be close to the code albeit each to a different closest codeword. Indeed, if one can argue that all
closest codewords are consistent then the existence of a close codeword to w is easily implied. We
observe that we can bootstrap the test to a strong local test using the relaxed local correctability
which we establish in the previous section (Lemma 4.9). The idea is simple: after applying the
local test over each of the rectangles, test whether they are close to consist codewords by locally
correcting a few random locations where the rectangles overlap.

We obtain a local tester that tests whether there exists a unique codeword c ∈ TCm that is
close to w over all rectangles I ∈ Rect(n) simultaneously, and formulate the statement as such.
We stress, however, that our tester also satisfies strong local testability for tree distance, due to the
connections made in [MRR25] between tree distance and suffix distance, and between tree distance
over flattened words and their furthest rectangle (see [MRR25, Lemma 5.2 and Claim 6.11]).

Proposition 4.10 (Local Testability of TCm). Let m ∈ N and let TC be a linear tree code with
constant tree distance δ. Then, there exists ϵ(n) = Ω(1/ logm(n)) and a tester T that has oracle
access to a word w : [n]→ FLm

and satisfies the following properties:

– (Completeness) If w ∈ TCm, then Pr[Tw = 1] = 1.

– (Soundness) Let ∆S(w,TC
m) be the minimum over all length-n codewords c ∈ TCm of

∆S(w, c) := max
I∈Rect(n)

∆S(wI , cI).

Then, Pr[Tw = 0] ≥ ϵ(n) ·min(∆S(w,TC
m), (δ/2Hn)

m).

19

– (Query Complexity) T makes at most O(n2/m) queries to w.

Proof. The tester applies the local test from Theorem 4.5 over each of the 2m rectangles in the
cover Rect(n) and rejects if any of the tests does. Then, for any two rectangles I, I ′ ∈ Rect(n),
the tester repeats the following λ = logm+2 n/δm times:

1. Sample a coordinate t← σI∩I′ (Definition 3.7).

2. Apply the local corrector from Lemma 4.9 twice:

2.1 Over wI with input coordinate t to obtain a symbol y.

2.2 Over wI′ with input coordinate t to obtain a symbol y′.

3. If ⊥ ∈ {y, y′} or y ̸= y′, reject.

If all tests pass, the tester accepts.
Completeness of the test is by inspection. For Ir ∈ Rect(n), let cr : Ir → FLm

be the codeword
cr ∈ TCm minimizing ∆S(c

r, wIr). We may assume that ∆S(c
r, wIr) < (δ/2Hn)

m for all r since,
otherwise, the local test over Ir rejects with probability at least ϵ(n) · (δ/2Hn)

m (Theorem 4.5).
By Lemma 4.9, we may assume, then, that the local corrector always outputs the correct symbol
or ⊥, since this occurs with probability all but negligible. If the corrector ever outputs ⊥ the test
rejects, thus we may ignore such cases.

If there exist Ir, Iq s.t. crIr∩Iq ̸≡ cqIr∩Iq , then by the suffix distance of the code (Lemma 3.8)

∆S(c
r
Ir∩Iq , c

q
Ir∩Iq) ≥ (δ/Hn)

m and, by our assumptions, the local corrector will output two different

symbols with probability (δ/Hn)
m for every choice of t in the iteration over I = Ir and I ′ = Iq.

The probability that it outputs different symbols for at least one coordinate out of the λ is then
1− (1− (δ/Hn)

m)λ = 1− e−λ(δ/Hn)m = 1− e−Ω(log2 n).
If crIr∩Iq ≡ cqIr∩Iq for all Ir, Iq, then the well-defined codeword c ∈ TCm that is consistent with

(the flattening of) all cr is the closest codeword to w in ∆S distance. In particular, there exists a
rectangle I ∈ Rect(n) such that ∆S(wI , cI) = ∆S(w, c) and, hence, the local test over I will reject
with probability at least ϵ(n) ·∆S(w, c) (Theorem 4.5).

4.3 The Base Code

So far, we have established that a flattened tensor tree code TCm is itself a tree code that sat-
isfies the notion of suffix distance and two especially useful properties: local testability and local
correctability. While all of these properties are invariant to the choice of the base linear tree
code TC, our PCP design will require further structural properties that actually depend on that
choice (in particular, to allow constraint evaluation under codewords (iii)). We elaborate on these
requirements in Section 5 and, for now, present the base tree code that we employ to fulfill them.

We use a tree code by Schulman [Sch94], which is among the first known tree code constructions
and arguably the simplest. The construction is generic and uses any standard linear block code as
a black-box. We describe it formally in Fig. 6 and pictorially in Fig. 7. (We additionally refer the
reader to the exposition in [Gel17, Section 3.1.1].7)

Proposition 4.11 ([Sch94, Gel17]). Let F = {F(k)} be a sequence of extension fields where F(k−
1) ⊆ F(k) for all k ≥ 1. The encoding function TC : F(0)n → F(⌈log n⌉ − 1)(ℓ⌈logn⌉+1)n from Fig. 6
defines a linear tree code over F with constant tree distance if the underlying block code {Ck} (with
encoding function) is linear over F, has rate 1/ℓ and constant relative Hamming distance.

7We present a variant that is simpler than that from [Gel17] which still gives sufficiently good parameters.

20

A Tree Code TC from any Block Code C = {Ck : F(k)2k → F(k)ℓ2k}

TC(x1, . . . , xn) :

1. For all k = 0, . . . , ⌈log n⌉ − 1 and j = 1, . . . ,
⌈
n/2k

⌉
− 1, let

ck,j = Ck(x(j−1)2k+1, . . . , xj2k) ∈ F(k)ℓ2
k
.

2. Let
ck = (0ℓ2

k
, ck,1, . . . , ck,⌈n/2k⌉−1) ∈ F(k)ℓn

′(k), (3)

where n′(k) = 2k ·
⌈
n/2k

⌉
and view it as a function ck : [n′(k)] → Fℓ by dividing it

into blocks of length ℓ.

3. Output c : [n]→ F(⌈log n⌉ − 1)ℓ⌈logn⌉+1, where

c(t) = (xt, c0(t), . . . , c⌈log t⌉−1(t), 0, . . . , 0). (4)

Figure 6: The generic tree code construction by Schulman [Sch94].

Note we override the notation from Definition 3.5, where F(n) denotes the alphabet of codewords
in TC of length n.

Proof. Let δ denote the relative Hamming distance of C. The code is linear since it is simply a
concatenation of codewords from linear block codes. It suffices then to give a lower bound on the
minimum tree weight of any codeword (its tree distance from the zeros codeword). Let x ∈ Fn be
a non-zero message and let t be the location of the first non-zero symbol in x. Denote c = TC(x).

For any k ∈ {0, . . . , ⌈log n⌉−1}, let jk denote the integer j satisfying t ∈ {(j−1)2k+1, . . . , j2k}.
It holds that ck,jk ∈ Ck is a non-zero codeword since it encodes a message that contains x(t) and,
therefore, has relative Hamming weight at least δ. Additionally, ck,jk constitutes a part of the
codeword symbols in c at locations Sk = {jk · 2k + 1, . . . , jk · (2k + 1)} (illustrated in Fig. 8).

Let k∗ denote the largest k satisfying jk · (2k + 1) ≤ n. It holds that n∗ := jk∗ · (2k
∗
+ 1) ≥

⌊(n− t)/2⌋ since, otherwise, n− t > jk∗ · (2k
∗+1 + 2) > jk∗+1 · (2k

∗+1 + 1) (note jk decreases with
larger k), contradicting the definition of k∗.

Let S = {t}∪
(⋃

0≤k≤k∗ Sk

)
and note it contains all locations from t to n∗. Further, t /∈ Sk for

any k and for any k, k′, Sk and Sk′ are either disjoint or one is a subset of the other. Hence, c(S)
contains at least δ-fraction non-zeros, induced by c(t) which contains xt and the minimal union
of codewords from C (over S1, . . . , Sk∗) that covers all of S, where codewords do not overlap. We
conclude that w more than ⌊δ(n− t)/2⌋ non-zeros and that TC has constant tree distance.

Assuming it is possible to verify that a given word w is in C = {Ck} and to decode the underlying
message efficiently, it is possible to efficiently verify that a word w is in the corresponding tree code
TC and, if so, to decode it. The verification checks if each of the block-codewords composing w is in
C and, importantly, that block-codewords from different threads that encode overlapping intervals
in the message are indeed consistent.

We further generalize Schulman’s construction to codes with no well-defined encoding function,
as such codes appear in our tree PCP construction. Recall, C(x) and TC(x) denote, in this case,

21

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

c0

c1

c2

c3

c(5) c3,1 = C(x1, . . . , x8)c2,1 = C(x1, . . . , x4)

c2,2 = C(x5, . . . , x8)

Figure 7: A codeword c = TC(x1, . . . , x10) of the tree code from Fig. 6 with length n = 10. The
codeword consists of ⌈log n⌉ = 4 threads, where thread ck, for k = 0, . . . , 3, contains codewords in
C that encode parts of the message of length 2k. The codewords of C are marked in blue. A square
denotes a tuple of ℓ field elements and dotted squares denote 0ℓ. The tth symbol in c is a column
consisting of ℓ ⌈log n⌉+ 1 field elements that includes xt.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

c0

c1

c2

c3

Figure 8: The effect of a non-zero at t = 3 in a codeword of length n = 10, defined by the coordinate
sets S0, . . . , Sk∗ (striped).

a set of codewords that encode x under each of the respective codes.

Remark 4.12 (Schulman’s Construction without Well-defined Encoding). We generalize the con-
struction from Fig. 6 to the case where the underlying block codes {Ck} lack an encoding function, to
still give a well-defined tree code TC (that in turn does not have a well-defined encoding function),
as follows.

The tree code TC is defined as the set of all words of length n ∈ N where there exists (x1, . . . , xn) ∈
F(0)n such that c(t) is as in Eq. (4) where, for k = 0, . . . , ⌈log n⌉ − 1, ck is as in Eq. (3) where
ck,j ∈ Ck(x(j−1)2k+1, . . . , xj2k) for any j = 1, . . . ,

⌊
n/2k

⌋
− 1.

Note that in the generalization above, when 2k does not divide n, ck,j for j =
⌈
n/2k

⌉
− 1 may

be arbitrary. This is the last block-codeword in the thread ck, that is not entirely contained in
c. This is important to allow efficiently verifying that a given word w is in TC, where partial
block-codewords can be ignored (as there is no generic way to efficiently verify partial codewords
of C). At the same time, this does not harm the linearity of the tree code and neither its tree
distance: notice that the distance analysis in the proof of Proposition 4.11 never involves such
partial block-codewords (see Fig. 8). Consequently, we obtain similar implication via an identical
proof.

Proposition 4.13. The generalized code from Remark 4.12 is a linear tree code with constant tree
distance if the underlying block codes {Ck} are linear and have constant relative Hamming distance.

To obtain a concrete tree code with the desired structural properties, we instantiate the con-
struction from Fig. 6 using Reed-Solomon codes over extensions of GF(2).

22

Definition 4.14 (The Block Code C). Let ℓ ≥ 8 be any constant power of 2. For any k ∈ N, let
F(k) = GF(2)f where f is the smallest power of 2 such that f ≥ k + log ℓ. Let H ⊂ GF(2)f be
the span of some linearly independent e1, . . . , ek ∈ F(k) over GF(2).8 Associate [2k] with H in the
following way: any coordinate t ∈ [2k] maps to t̃ =

∑
i tiei ∈ H, where (t1, . . . , tk) ∈ GF(2)k is the

binary representation of t− 1,
Let {Ck : F(k)2k → F(k)ℓ2k} be the family of linear block codes where Ck is the Reed-Solomon

code over F := F(k) defined as follows: For any x : [2k] → F, Ck(x) = x̃, where x̃ : F → F is
the unique univariate polynomial with degree at most 2k − 1 over F satisfying x̃(t̃) = x(t) for all
t ∈ [2k].

The block code Ck from Definition 4.14 has relative Hamming distance 1−(2k−1)/2f = 1−1/ℓ
by the polynomial identity lemma (Schwartz-Zippel). Additionally, the encoding function Ck is
efficiently computable and it holds that F(k − 1) ⊆ F(k) for all k ≥ 1 and |F(k)| = O(2k).

Consequently, the tree code construction from Fig. 6, when instantiated using the block code
C, results in a tree code TC : F(0)n → F(⌈log n⌉ − 1)L(n)·n where |F(⌈log n⌉ − 1)| = O(n) and
L(n) = O(log n). Hence, the rate of the code is Ω(1/ log2 n) and encoding a message of length n
takes time polynomial in n.

5 Constraint Evaluation under Codewords

We express the transition and consistency constraints over assignments (Steps 2.2 and 2.3 in Fig. 1)
using a collection of well-structured constraints that satisfy the following:

1. (Correctness, (i)) Any assignments A1, . . . , A3s satisfy the original constraint if and only if
there exist witnessesW 1, . . . ,WK that, together with A1, . . . , A3s, satisfy all new constraints.

Each of the constraints is defined by a constraint-evaluation function P , that maps assignments
A1, . . . , A3s and witnesses W 1, . . . ,WK to a vector of evaluations E, where E(t) can be thought of
as the outcome of evaluating the constraint, namely its truth value, over the assignments and their
witnesses at time t. The constraint is satisfied by given assignments and witnesses for all t if the
corresponding E is all zeros (we associate zero with TRUTH).

2. (Codeword Evaluation, (iii)) The structure of the new constraints allows the verifier to evalu-
ate them over any A1, . . . , A3s andW 1, . . . ,WK “underneath” their corresponding codewords.
By this, we mean that given access to codewords Ã1, . . . , Ã3s, W̃ 1, . . . , W̃K encoding the as-
signments and their witnesses, the verifier can simulate access to a codeword Ẽ encoding
the evaluation vector E. Jumping ahead, simulating access to Ẽ, a redundant encoding of
E, facilitates performing a zero test (Section 6) for checking that E is the all-zero string,
implying that the corresponding constraint is satisfied at all t.

3. (Incrementality) For applicability to tree PCPs, we require that the witness and evaluation
vectors, W i and E, are incremental in the assignments A = (A1, . . . , A3s) (Definition 3.2).
Namely, that witnesses and evaluations corresponding to A of length n are an extension of
the witnesses and evaluations corresponding to any prefix of A. Additionally, extending these
vectors upon appending new values to the assignments can be done efficiently.

The statements made throughout this section are with respect to the tree code TC, which is
the instantiation of Fig. 6 with the block code C from Definition 4.14, and its derivations TCm and

8Note H is a k-dimensional subspace of GF(2)f but not a subfield of F.

23

TCm (Definitions 4.1 and 4.6). We use F = {F(k)} from Definition 4.14 and L(n) = ℓ ⌈log n⌉ + 1
to denote the parameters corresponding to TC. Further, we let δ = δ(C) denote the (constant)
minimal relative Hamming distance in C.

5.1 The Transition Constraints

Evaluating the transition constraints (Fig. 1, Step 2.2) entails evaluating a given circuit C over
assignments A1, . . . , AS in a pointwise manner .

Lemma 5.1 (Pointwise Circuit-Evaluation under Codewords). For any circuit C : {0, 1}S →
{0, 1}, there exists a collection of constraints Eval(C) of size poly(|C|), where every constraint
P ∈ Eval(C) is a function P = {Pn : (Fn)S+K → Fn}, for F = F(0) and K = poly(|C|), that
satisfies the following properties:

– (Correctness) The following two conditions are equivalent for any A1, . . . , AS : [n]→ F:

• A1, . . . , AS are binary and C(A1(t), . . . , AS(t)) = 1 for all 1 ≤ t ≤ n.
• There exist W 1, . . . ,WK : [n]→ F such that

P (A1, . . . , AS ,W 1, . . . ,WK) ≡ 0

for all P ∈ Eval(C).

We say that such W 1, . . . ,WK are witnesses to A1, . . . , AS.

– (Codeword Evaluation) There exists a tree code TC′ with constant tree distance and, for any algo-
rithm V and any P ∈ Eval(C), there exists an algorithm V such that, for any A1, . . . , AS ,W 1, . . . ,WK :
[n]→ F and input x,

V
Ã1,...,ÃS ,W̃ 1,...,W̃K

(x) = V Ẽ(x),

where Ẽ ∈ (TC′)m(P (A1, . . . , AS ,W 1, . . . ,WK)) and Ãi = TCm(Ai), W̃ i = TCm(W i).

Furthermore, the query complexity and runtime of V are at most poly(|C|)-times larger than
those of V .

– (Incrementality) For any satisfying A = (A1, . . . , AS), there exist witnessesW 1 =W 1
A, . . . ,W

K =
WK

A such that {W i
A}, for any i, and {EA = P (A1, . . . , AS ,W 1

A, . . . ,W
K
A)}, for any P ∈ Eval(C),

are (poly(|C|), 1)-incremental.

To prove the lemma, we first turn the constraint C(A1, . . . , AS) ≡ 1 into a collection of low-
degree constraints over the finite field F := F(0) by standard techniques. Then, we show how to
evaluate low-degree polynomials over messages underlying codewords of TCm.

The first step is to convert the circuit-satisfiability statement over C into a 3-SAT statement
over a 3-CNF formula ψC over S + K variables with L clauses, where L,K = poly(|C|) and ψC

is satisfiable with input A1, . . . , AS , W 1, . . . ,WK for some witness W 1, . . . ,WK if and only if C
is satisfiable by A1, . . . , AS . Then, to allow codeword evaluation, we arithmetize ψC and express
it as a low-degree polynomial over F: We associate each Boolean value in the assignment with
the corresponding field element in {0, 1} ⊆ F and obtain an assignment over F. We represent
each clause in the 3-CNF formula ψC by the degree-3 polynomial that agrees with it over {0, 1}3,
where we associate a TRUE outcome with 0 and FALSE with 1. (For instance, (¬x1 ∨¬x2 ∨ x3) is
represented by the polynomial x1x2(1−x3).) The formula ψC is then represented by the collection
of the degree-3 polynomials corresponding to its clauses.

24

Proposition 5.2 (3-CNF Arithmetization). There exists a mapping from any 3-CNF formula ψ
over K ′ variables with L clauses to a collection {p1, . . . , pL} of degree-3 K ′-variate polynomials over
F, such that a Boolean assignment satisfies ψ if and only if its embedding in FK′

satisfies is a root
of pj for all j.

In addition to the polynomials p1, . . . , pL, we must check that A1, . . . , AS and W 1, . . . ,WK

indeed encode Boolean assignments. To that end, we add the polynomials z1, . . . , zS+K to our
collection of constraints, where

zi(x1, . . . , xS+K) = xi(1− xi). (5)

Evidently, the set roots of zi is exactly all inputs where xi ∈ {0, 1}.
Let us defineEval(C) = {Pf | f ∈ {p1, . . . , pL, z1, . . . , zS+K}}, where Pf (A

1, . . . , AS ,W 1, . . . ,WK)
is the function that evaluates f(A1(t), . . . , AS(t),W 1(t), . . . ,WK(t)) at any t ∈ [n]. By the above,
there exist W 1, . . . ,WS : [n] → F such that P (A1, . . . , AS ,W 1, . . . ,WK) ≡ 0 for all P ∈ Eval(C)
if and only if A1, . . . , AK are binary and C(A1(t), . . . , AK(t)) = 1 for all t. Since any pi or zi is a
polynomial over F of degree at most 3, it remains to show how to evaluate degree-3 polynomials,
in a point-wise manner, underneath TCm codewords.

In linear codes, by definition, adding the encoding of two messages gives the encoding of their
sum. Thus, the only missing part for locally evaluating low-degree polynomials over codewords is
to be able to multiply the variables they encode. Since our goal is to evaluate polynomials over
variables coming from the same coordinate in different codewords, we are specifically interested
in the point-wise product of two encoded messages. With a similar goal in mind, Meir [Mei13]
formulates the notion of multiplication codes that precisely captures this capability. We restrict the
definition to a simple special case of the notion defined in [Mei13], that is sufficient and achievable
in our context.9

For simplicity, we restrict our definition to codes that have a well-defined encoding function.
The corresponding multiplication code, however, may lack such an encoding function (in which
case, recall, C(x) denotes a set of codewords).

Definition 5.3 (Multiplication Codes [Mei13]). We say that a block code C over F with a well-
defined encoding function is a µ-multiplication code, for an integer µ ∈ N, if there exists another
code C′, which we refer to as the product code of C, such that

C(x1)⊙ . . .⊙ C(xµ) ∈ C′(x1 ⊙ . . .⊙ xµ),

where ⊙ denotes point-wise product over F.
We extend the notion to linear tree codes TC = {TCn : F(0)n → F(n)L(n)} where multiplication

over F(n)L is defined as the point-wise product.

Proposition 5.4 (C is a Multiplication Code). For any k, the block code Ck from Definition 4.14
is a 5-multiplication code. The product code of Ck is linear and has constant relative Hamming
distance.

Proof. The code is 5-multiplication by the fact that the point-wise multiplication of the evaluation
table of two polynomials gives the evaluation table of their product. The product code has relative
distance 1 − 5/ℓ since the degree of the product of five polynomials of degree 2k − 1 is at most
5(2k − 1).

9We remark that similar notions existed in the literature, but our use here is closest to that of [Mei13].

25

Note that the multiplication code of Ck, denote it by C′k, has the capacity to encode information
of length 5 · (2k − 1) + 1 over F. On the other hand, codewords that are the point-wise product of
two codewords in Ck encode information of length 2k < 5 · (2k − 1) + 1.

For instance, let x1, y1 ∈ F(k)2k and x2, y2 ∈ F(k)2k denote two message pairs such that x1⊙y1 =
x2 ⊙ y2 = z. Then, c1 = Ck(x1)⊙Ck(y1) and c2 = Ck(x2)⊙Ck(y2) are both codewords in C′k that
encode z – they are the evaluation vectors of degree-(5 · (2k − 1)) polynomials that evaluate z over
H (see Definition 4.14) – but are not necessarily identical over all of F(k).

The extra redundancy makes the encoding function over the message space F(k)2k ambiguous
but this is completely fine since C′k is still a well-defined linear code (as a subset of strings) with
constant relative Hamming distance. Further, every codeword c ∈ C′k encodes a well-defined

message in F(k)2k that can be efficiently decoded given c.

Remark 5.5. The multiplication code C′k, corresponding to Ck, satisfies |C′k| > |Ck| and does

not induce a well-defined encoding function over the message space F(k)2k . In particular, any

x ∈ F(k)2k has many valid encodings under C′k, which we denote by the set C′k(x).

Nevertheless, given a word w ∈ F(k)ℓ2k as input, it is possible to efficiently tell if w ∈ C′k and,
if that is the case, to find the well-defined message x such that w ∈ C′k(x).

We note that 3-multiplication suffices for the proof of Lemma 5.1. However, a larger multipli-
cation degree of 5 is required for evaluating the consistency constraints in Section 5.2.

The tree code TC from Fig. 6 generically inherits the multiplication property of the underlying
block code C, if it exhibits any.

Proposition 5.6. The tree code TC from Fig. 6 is a µ-multiplication code assuming the underlying
block code C is a µ-multiplication code. Further, instantiating the construction with the product code
of C gives the product code of TC (Remark 4.12).

Proof. The proposition follows from the observation that a codeword in TC is a concatenation of
codewords from C that encode fixed sections of the input. Then, the multiplication property follows
from the fact the, for any x, y ∈ F(0)n and any (possibly overlapping) I, J ⊆ [n],(

C1(xI),C2(xJ))⊙ (C1(yI),C2(yJ)
)

=
(
C1(xI)⊙ C1(yI),C1(xJ)⊙ C2(yJ)

)
∈ {(c1, c2) | c1 ∈ C′

(
(x⊙ y)I

)
, c2 ∈ C′

(
(x⊙ y)J

)
}.

Following Remark 5.5, the product code of TC does not induce a well-defined encoding function
over the message space. However, it is still a well-defined tree code with constant tree distance,
and allows to verify and decode codewords efficiently – see Remark 4.12 and Proposition 4.13 and
the discussion in between.

As noted by [Mei13, Proposition 3.13], the tensor of a multiplication code is itself a multi-
plication code, where the product code is the tensor of the base product code. Thus, TCm is a
multiplication code if TC is. We additionally note that flattening the code TCm preserves its mul-
tiplication property since we are merely re-organizing the codeword symbols. Overall, we obtain
the following, which completes the proof of Lemma 5.1.

Proposition 5.7. If a tree code TC is a µ-multiplication code with product code TC′, then TCm

and TCm are µ-multiplication codes with product codes (TC′)m and, respectively, (TC′)m.

26

5.2 The Consistency Constraints

Next, we show how to simulate access to codewords encoding an evaluation of the consistency
constraints between two assignments A = Ai and A′ = Aj (Fig. 1, Step 2.3), akin to the simulation
for the transition constraints from the previous section.

While the simulation for the transition constraints given in Lemma 5.1 is quite straight-forward,
we obtain weaker, more nuanced, guarantees from the simulation for the consistency constraints in
Lemma 5.8 below, which are nevertheless still sufficient for a tree PCP. Before stating the lemma,
let us highlight the differences compared to the statement from Lemma 5.1:

1. Unlike the witnesses for Eval(C), the length of witnesses W i for the consistency constraints
and the corresponding evaluation vectors E does not exactly match the length of the assign-
ments n, but is still N = O(n). While W i and E are still monotone in the assignments
A,A′, they are not directly incremental – it is no longer the case that extending A,A′ by
one additional coordinate requires adding few values to W i and E. This, however, holds in
average, giving us an amortized notion of incrementality (Remark 5.9). In Section 7.3, we
show how to de-amortize W i and E to make them incremental, on par with the tree PCP
requirements.

2. It does not hold here that an evaluation vector E is all-zeros when the corresponding constraint
is satisfied, but rather that it is zeros over a certain subset of coordinates R. Here, it is
convenient to switch to a setting where we view E as an m-dimensional tensor over some
rectangle I = [n1] × · · · × [nm], and where it holds that the subset R is a sub-rectangle
R ⊆ I. Consequently, every (new) constraint is additionally characterized by a rectangle R,
besides the evaluation function P , and may be written as ER ≡ 0. Importantly, our zero test
(Section 6) supports verifying such partial statements, as long as the “zero-set” R is indeed
a rectangle.

3. We obtain a set of constraints that does not entirely cover all consistency constraints over
a pair of assignments A, A′, namely that A(t) = A′(t − 1) for all coordinates t > 1 (2.3).
Instead, our set of constraints, if satisfied, guarantees that A(t) = A′(t − 1) for almost all
t. Specifically, for all t except for an efficiently computable, constant-size set of coordinates
which we denote by Bad(n). Since it has constant size, this exception does not constitute a
big issue in our PCP construction: The verifier can individually verify each of the remaining
consistency constraints in a straight-forward way using the local correctability property of
the code (Lemma 4.9).

4. The simulation from Lemma 5.8 cannot simulate access to an evaluation codeword Ẽ given
input codewords Ã, Ã′, W̃ 1, . . . , W̃K alone, but it requires extra help from the prover in the
form of an additional oracle Y . An “honest” Y can be thought of as an extension of the
input codewords and can be computed given only A (in particular, Y is also monotone in A).
Crucially for soundness, an arbitrary value of Y , which might be given in a “cheating” PCP,
cannot make the simulation deviate much from its desired behavior: We guarantee that for
any arbitrary Y , except with negligible probability, the simulation either simulates access to
a word very close to Ẽ or detects that Y is corrupted and outputs ⊥.

Lemma 5.8 (Consistency Evaluation under Codewords). There exists an (infinite) collection of
constraints EQ, where every constraint (P,R) ∈ EQ consists of a function P = {Pn : (Fn)2×FN1×
· · · × FNK → FIP }, for F = F(0), K := K(n) = polylog(n), Ni := Ni(n) = O(n) and a rectangle
IP := IP (n) ⊂ Nm of size O(n), and R is a (possibly infinite) rectangle R ⊆ Nm, that satisfies the
following properties:

27

– (Size) For any n ∈ N, the set EQ(n) = {(P,R) ∈ EQ | IP (n) ∩R ̸= ∅} has size polylog(n).

– (Correctness) There exists an efficiently computable Bad(n) ⊆ [n] of size O(1), such that the
following two conditions are equivalent for any A,A′ : [n]→ F:

• A,A′ are binary and A(t) = A′(t− 1) for all 1 < t ≤ n, t /∈ Bad(n).

• There exist W 1, . . . ,WK (henceforth witnesses for A,A′) where W i : [Ni] → F, such that
for all (P,R) ∈ EQ, letting E = P (A,A′,W 1, . . . ,WK) ∈ FIP (n), it holds that ER ≡ 0.

– (Codeword Evaluation) There exists a tree code TC′ with constant tree distance and, for any algo-
rithm V and any (P,R) ∈ EQ, there exists an algorithm V such that, for any A,A′,W 1, . . . ,WK :

• (Completeness) There exists and oracle Y = YA satisfying

V
Ã,Ã′,W̃ 1,...,W̃K ,YA(x) = V Ẽ(x)

on any input x, where Ẽ ∈ (TC′)m(P (AI , A
′
I ,W

1
I , . . . ,W

K
I)) and Ã = TCm(A), Ã′ = TCm(A′),

W̃ i = TCm(W i).

• (Soundness) For any oracle Y , there exists E′ such that ∆S(Ẽ, E
′) < O(1/ logm+1(n)) and

Pr

[
V

Ã,Ã′,W̃ 1,...,W̃K ,Y
(x) ∈

{
V E′

(x), ⊥
}]

> 1− n−Ω(logn),

on any input x.

• (Complexity) The query complexity of V is O(n2/mpolylog(n) + logm(n) · q), where q is the
query complexity of V .

– (Monotonicity) {YA} is a monotone ensemble and, for any satisfying A,A′, there exist witnesses
W 1 = W 1

A, . . . ,W
K = WK

A (that depend only on A) such that {W i
A}, for any i, and {EA,A′ =

P (A,A′,W 1
A, . . . ,W

K
A)}, for any (P,R) ∈ EQ, are monotone ensembles.

Remark 5.9 (Incrementality in EQ). Any coordinate inW i
A for any i, or in P (A,A′,W 1

A, . . . ,W
K
A)

for any (P,R) ∈ EQ, can be efficiently computed by making O(1) queries to A,A′.
Further, it holds that YA = (Y ′(W 1

A), . . . , Y
′(WK

A)), where Y ′(W) = (TC+)m(W) for a tree code
TC+ with rate 1/polylog(n) and an encoding algorithm that runs in time poly(n). In particular,
the ensemble {Y ′W = Y ′(W)} is (nτ/m · polylog(n), polylog(n))-incremental (Remark 4.3), for a
constant τ independent in m.

Arithmetization of equality between two variables xi, xj in {0, 1} ⊆ F can be obtained by the
simple degree-2 function EQ(xi, xj) = (xi − xj)2. However, in contrast to the 3-CNF evaluations
that we apply over variables coming from the same location in different encoded assignments (i.e.
the same “row” in the columns A1, . . . , AS), the consistency constraints involve a variable from
any location t of some encoded assignment and a variable coming from location t − 1 of another
assignment. We can thus check consistency by evaluating EQ, in a point-wise manner, over some
assignment column A = Ai and a shift of another A′ = Aj . Given the tools from the previous
section, the remaining challenge lays in applying the shift. Roughly speaking, our goal then is,
given an encoding of an assignment, to simulate access to the encoding of its shift.

We do not know if there exists a tree code that allows shifting a location t in the encoded
message to location t − 1. Instead, we show that Schulman’s tree code from Fig. 6, instantiated
with the block code C (Definition 4.14), allows for a different type of shifts, which are sufficient to
simulate t 7→ t− 1 for all values of t using a small number of operations.

28

To describe the shift functions we realize, it is convenient to represent the coordinate set [n]
using ⌈log n⌉-bit labels, where each t ∈ [n] is represented by the binary representation of t−1, which
we denote by b(t) (e.g. b(1) = 0⌈logn⌉). We look into shifts defined by the functions {Γi : N→ N},
where for all i ∈ N, Γi(t) is the coordinate with the label obtained by flipping the i least significant
bits in the label of t. That is, Γi(t) = b−1(b(t) ⊕ (0, . . . , 0, 1i)). For every i ∈ N, let Λi be the set
of all t ∈ N where i is the biggest integer such that 2i−1 divides t− 1 (in other words, if the i least
significant bits in the label of t are 10i−1). Observe that if t ∈ Λi, then Γi(t) = t− 1 (see Fig. 3 for
illustration). Since Λ1, . . . ,Λ⌈logn⌉ cover [n], we may write

∀t, EQ(A(t), A′(t− 1)) = 0 ⇐⇒ ∀i ∈ ⌈log n⌉ , t ∈ Λi, EQ(A(t), A′(Γi(t))) = 0 (6)

for any assignments A,A′ : [n]→ {0, 1}.
For technical convenience, we additionally extend the above definitions to i = 0, where Γ0 is

the identity function and Λ0 = N.

5.2.1 Shifting under Codewords

Having reduced our goal to dealing with shifts by the functions Γi, we next show that the tree
code TCm indeed allows us to locally simulate access to codewords of shifted messages. For this
to be possible, we require that the block code underlying the base tree code construction (C
from Definition 4.14) exhibits such a property. Prior work on PCP also use Reed-Solomon codes
(and, more generally, Reed-Muller codes) to attain similar structural properties that are useful for
arithmetization. Some even specifically consider the type of shifts we are interested in [Spi95, PS94,
BGH+06].

Proposition 5.10 (Shifting under C). There exists a deterministic algorithm A that for any
x : [2k]→ F(k) and any input i ∈ [k], simulates a query to ĉ = C(x ◦ Γi) by making a single query
to c = C(x).

Proof. The transformations t̃ 7→ Γ̃i(t) are affine over H and, therefore, over F (recall the notation
t̃ from Definition 4.14). Hence, the codeword encoding x ◦ Γi(·) is a low-degree extension that can
be rewritten as x̃(α · t̃+ β) for some α, β ∈ F.

Unlike the multiplication property that seamlessly propagates from the underlying block code
C all the way to the flattened-tensor code TCm, extending Proposition 5.10 to TCm requires a
much more subtle treatment. For start, we show that given codewords of C can be “shifted”
by Γi as implied by the proposition, then codewords of the base tree code TC can be similarly
“shifted” albeit with some extra “help”. In more details, recall that a codeword c ∈ TC is the
“vertical” concatenation of ⌈log n⌉ “threads” ck (see Figs. 6 and 7). Every ck is itself a “horizontal”
concatenation of

⌈
n/2k

⌉
− 1 codewords of C, of total length n′(k) = 2k ·

⌈
n/2k

⌉
over Fℓ, which

possibly exceeds n (note the dotted red line in Fig. 7). When n′(k) > n, the codeword c does not
contain all of ck. To locally simulate the shifts, however, we require access to any ck in its entirety
and not only the parts composing c. (This will not be a problem for us since any ck will eventually
be a part of the growing codeword at time at most 2n; it will merely require the PCP to include
parts from future codeword symbols in advance.)

It is convenient to view such an extension of c as coming from a code that extends TC. Let TC+

denote the linear mapping that maps any x ∈ Fn to TC+(x) which consists of the concatenation of
x with {ck | 0 ≤ k < ⌈log n⌉}, where ck is as defined in Fig. 6. Observe that TC+ = {TC+

n } can be
viewed as a collection of linear block codes, where TC+

n : Fn → F(ℓ⌈logn⌉+1)n′
for F = F(⌈log n⌉− 1)

29

and n′ = maxk n
′(k) (in this interpretation, a codeword symbol is padded with zeros if it comes

from a subspace of the co-domain).
Note that a coordinate set [n] is closed under Γi only when n is divisible by 2i. Consequently,

we are able to simulate access to encoded assignments shifted by Γi only when their length is such
an n. This suffices for our eventual goal, as we shall see in the next section.

Lemma 5.11 (Shifting under TC). Let δ < δ(C) be an arbitrary constant. For any i ∈ N, there
exists a deterministic algorithm A that takes as input a coordinate in [n], where n is divisible by 2i,
and outputs a symbol in Fℓ·⌈logn⌉+1, where F = F(⌈log n⌉− 1), and satisfies the following properties
for any x : [n]→ F:

– (Soundness) For any w such that ∆S(w,TC(x)) < δ/4Hn and any y, the word ŵ defined by
ŵ(t) = Aw,y(t) satisfies: if ∆S(ŵ,TC) < δ/4Hn then the closest codeword to ŵ in ∆S is
TC(x ◦ Γi).

– (Completeness) If (w, y) = TC+(x), then ŵ = TC(x ◦ Γi).

– (Query Complexity) A reads O(log n) field elements from its oracles on any input.

Proof. We first show completeness given oracle (w, y) = TC+(x). Let c = TC(x), ĉ = TC(x ◦ Γi)
and let ĉk be the component of ĉ as defined in Fig. 6. It suffices to show how to compute ĉk(t) for
all k = 0, . . . , ⌈log n⌉ − 1. (Computing the “message part”, i.e. the first field element in any ĉ(t)
equal to xΓi(t), is straight-forward). Assume t > 2k (otherwise ĉk(t) = 0ℓ). Letting j =

⌈
t/2k

⌉
− 1

and t′ = t mod 2k, it holds that ĉk(t) = ĉk,j(t
′) ∈ Fℓ where ĉk,j : [2

k]→ Fℓ is as defined in Fig. 6.
Our goal then is to compute ℓ field elements from ĉk,j which, by construction, is the encoding of
(x̂((j − 1)2k + 1), . . . , x̂(j2k)) under C, where x̂ = x ◦ Γi.

Now, observe that b((j − 1)2k + 1) = (b(j), 0k) and b(j2k) = (b(j), 1k). If i ≤ k, then by
these observations it holds that x̂((j − 1)2k + z) = x((j − 1)2k + Γi(z)) for all z ∈ [2k], hence
ĉk,j can be simulated by accessing ck,j due to Proposition 5.10. If i > k, then it holds that
x̂((j− 1)2k + z) = x((Γi−k(j)− 1)2k +Γi(z)) and we can use ck,Γi−k(j) to simulate; notice that Γi−k
maps [n/2k] to itself and, therefore, Γi−k(j) ≤ n/2k and, therefore, ck,Γi−k(j) is a part of ck and,

therefore, of TC+(x).
For soundness, assume that ∆S(w, c) < δ/4Hn and y is arbitrary. Let ŵ be the word computed

by Aw,y. Let us recall some notation from the proof of Proposition 4.11. For any t ∈ [n], Let jk(t)
denote the integer j satisfying t ∈ {(j−1)2k+1, . . . , j2k}, let Sk(t) = {jk(t)·2k+1, . . . , jk(t)·(2k+1)}
and let k∗(t) be the largest k satisfying jk(t) · (2k + 1) ≤ n.

For f ∈ {c, w, ŵ}, let fx : [n] → F and {fk : [n] → Fℓ} denote the partition of f into threads,
where f(t) = (fx(t), f0(t), . . . , f⌈logn⌉−1(t)) (as in Figs. 6 and 7). We further define the word fS(t)
over F, which contains the following elements from f : fx(t) and, for any 0 ≤ k∗ ≤ k, the restriction
of fk to Sk(t). Think of fS(t) as follows: If f is a codeword that encodes some x, then fS(t) is
the concatenation of all codewords of C that depend on xt and are entirely contained in f ; see an
example in Fig. 8.10

By inspection of the algorithm A, for any t, every element in ŵS(t) is a function of a single
element in wS(Γi(t)) (recall the simulator from Proposition 5.10 is single-query). Furthermore, this
is the function that derives any element in ĉS(t) from the corresponding element in cS(Γi(t)).

Since ∆S(w, c) < δ/4Hn, then ∆H(wS(t), cS(t)) < δ/2 for any t. This is by Lemma 3.8 and be-

cause S(t) overlaps with at least half of the suffix {t, . . . , n} (since jk∗(t)(t) ·(2k
∗(t)+1) ≥ ⌊(n− t)/2⌋,

10In the proof of Proposition 4.11, we similarly consider the set of locations S. There, we define S as a set of
codeword-symbol locations, which span across all “threads”. Here, in contrast, we consider the corresponding set of
field-element locations.

30

see proof of Proposition 4.11). By the above, then, this implies that ∆H(ŵS(t), ĉS(t)) < δ/2 for any
t.

Now, assume towards contradiction that ∆S(ŵ, c
′) < δ/4Hn for c′ ̸= ĉ. Again, it must be that

∆H(ŵS(t), c
′
S(t)) < δ/2 for any t. By triangle inequality, we conclude that ∆H(ĉS(t), c

′
S(t)) < δ for

any t and, therefore, c′ ≡ ĉ by the Hamming distance of C.

Shifting messages encoded by TC allows us to shift m-dimensional messages encoded by TCm

along each of the m dimensions, or even a subset of the dimensions. For any j ∈ [m], define

Γj
i (t1, . . . , tm) = (t1, . . . ,Γi(tj), . . . , tm). (7)

More generally, for (i1, . . . , im) ∈ (N∪{0})m, we denote Γi1,...,im = Γ1
i1
◦· · ·◦Γm

im
(note the definition

is invariant to the order of composition). Letting J = {j | ij ̸= 0} and 1J ∈ {0, 1}m denote the
binary vector that is 1 at any j ∈ J , we have that

∀j ∈ [m], tj ∈ Λij =⇒ Γi1,...,im(t1, . . . , tm) = (t1, . . . , tm)− 1J . (8)

(Recall Γ0 is identity and Λ0 = N.)
Since shifting a message under TC is possible only given access to its extended encoding under

TC+ (Lemma 5.11), applying shifts over a tensor encoded under TCm similarly requires access to
the extended encoding under the tensor product of TC+, i.e. (TC+)m.

Lemma 5.12 (Shifting under TCm). Let δ < δ(C) be an arbitrary constant. For any i1, . . . , im ∈
N ∪ {0}, there exist ϵ(n) = O(δm+1/ log2m+1(n)), a probabilistic tester T and a deterministic
algorithm A that takes as input a coordinate in [n1] × · · · × [nm], where nj is divisible by 2ij for
all j, and outputs a symbol in F(ℓ·⌈logn1⌉+1)×···×(ℓ·⌈lognm⌉+1), where F = F(⌈log(maxj nj)⌉ − 1), that
satisfy the following for any x : [n1]× · · · × [nm]→ F:

– (Soundness) For c = TCm(x) and any y such that Pr[T c,y = 1] > 1 − ϵ(n), the word ŵ
defined by ŵ(t1, . . . , tm) = Ac,y(t1, . . . , tm) satisfies ∆S(ŵ, ĉ) ≤ (δ/Hn)

m+1/8, where n :=
max(n1, . . . , nm) and ĉ = TCm(x ◦ Γi1,...,im).

– (Completeness) If (c, y) = (TC+)m(x), then Pr[T c,y = 1] = 1 and ŵ ≡ ĉ.

– (Query Complexity) T reads O(n2 logm n) field elements from its oracles, where n = maxj nj,
and A reads O(logm n).

Proof. We begin by showing how to apply a shift over one dimension, say the mth. To allow
the algorithm A to apply the shift iteratively, we do not only show how to simulate access to
TCm(x ◦ Γm

im
) given c+ = (TC+)m(x), but rather how to simulate access to the extension ĉ+ =

((TC+)m−1⊗TC)(x◦Γm
im
), which we view as a function ĉ+ : [n′1]×· · ·× [n′m−1]× [nm]→ FL1×···×Lm ,

where Lj := ℓ · ⌈log nj⌉+ 1 and, recall, n′j = max0≤k<⌈lognj⌉ n
′
j(k) for n

′
j(k) = 2k ·

⌈
nj/2

k
⌉
.

Fix an input coordinate t = (t1, . . . , tm) ∈ [n′1]× · · · × [n′m−1]× [nm] in the domain of ĉ+.
Since c+, ĉ+ are codewords of the tensor codes (TC+)m and, resp. ((TC+)m−1 ⊗ TC), each of

the codeword-symbols c+(t) ∈ FL1×···×Lm and ĉ+(t) ∈ FL1×···×Lm can be viewed as a concatenation
of L′ =

∏m−1
j=1 Lj symbols in FLm , each coming from a codeword in TC+, resp. TC, along a column

parallel to themth axis in each of the tensors. We denote these columns by c+1 , . . . , c
+
L′ : [nm]→ FLm

and ĉ1, . . . , ĉL′ : [nm] → FLm respectively, where c+r ∈ TC+ and ĉr ∈ TC. The goal of A is to
compute ĉr(tm) for all r = 1, . . . , L′.

31

Let d : [n1]×· · ·×[nm]→ FL1×···×Lm−1×1 denote them-dimensional tensor obtained by applying
TC+ over x along all dimensions except the mth, namely d = ((TC+)m−1 ⊗ I)(x). Consider the
column in d that is parallel to axis m and intersects coordinate t, and let d1, . . . , dL′ : [nm] → F
denote a partitioning of this column that satisfies (d1(t

′
m), . . . , dL′(t′m)) = d(t1, . . . , tm−1, t

′
m) for

all t′m. It holds that c+r = TC+(dr) and ĉr = TC(dr ◦ Γm
i). Hence, A may apply the sim-

ulator from Lemma 5.11 over c+r to compute ĉr(tm) for any r and, overall, to obtain ĉ+(t) =
(ĉ1(tm), . . . , ĉL′(tm)).
A performs the above and repeats it along dimensions j = m − 1, . . . , 1, one at a time, to

simulate access to ĉ(j) = ((TC+)j−1⊗TCm−j+1)(x◦Γj
ij
· · ·◦Γm

im
) given access to ĉ(j+1) = ((TC+)j⊗

TCm−j)(x ◦ Γj+1
ij+1
· · · ◦ Γm

im
) (note ĉ(m) is ĉ+ from above). This yields an algorithm that outputs

any symbol of ĉ(1) = TCm(x ◦Γi1,...,im) by reading O(
∏m

j=1 log nj) = O(logm n) field elements from

c+. (While a naive analysis gives much larger, albeit still polylogarithmic, query complexity, note
that the base simulator from Lemma 5.11 separately computes each field element in the output
codeword symbol by reading a single field element in its oracle, therefore the complexity does not
blow-up exponentially with induction.)

To ensure soundness, we design the tester T to check that the words ĉ(j) that A computes allow
for sound simulation by Lemma 5.11. Specifically, for j = m, . . . , 1, T applies the local test from
Theorem 4.5 over the restriction of ĉ(j) to [n1] × · · · × [nm], that contains an alleged codeword in
TCm, which we denote by ŵ(j). In the tests, access to the oracle is simulated as done by A. Each
of the tests has query complexity O(n2) and, to simulate access to the oracles ŵ(j), O(logm n) field
elements has to be read per query.

Let δ′ = 1
8(δ/Hn)

m+1. By Theorem 4.5, there exists ϵ = O(δ′/ logm(n)) such that if T accepts

with probability more than 1 − ϵ, then ∆S(ŵ
(j),TCm) < δ′ for all j. Given this, we analyze

soundness by induction. Consider the iteration where A simulates access to the function ŵ(j) over
[n1]× · · · × [nm] given (ŵ(j+1), y), where ŵ(j+1) is also over [n1]× · · · × [nm].

Our inductive hypothesis is that ∆S(ŵ
(j+1),TC(x ◦ Γj+1

ij+1
◦ · · · ◦ Γm

im
)) < δ′ (and y is arbitrary)

and we want to prove that ∆S(ŵ
(j),TC(x ◦Γj

ij
◦ · · · ◦Γm

im
)) < δ′. The base case with ŵ(m+1) follows

since A is assumed to be initially given (c, y) where c = TCm(x) (thus the distance is zero). The
lemma follows from the last inductive step at j = 1.

For brevity, denote w := ŵ(j+1), ŵ := ŵ(j), c = TC(x◦Γj+1
ij+1
◦· · ·◦Γm

im
) ĉ = TC(x◦Γj

ij
◦· · ·◦Γm

im
).

(We override the notation ĉ from the lemma, where ĉ is used to denote the codeword corresponding
to j = 1.)

Assume that the closest codeword to ŵ is some c′ ̸= ĉ satisfying ∆S(ŵ, c
′) < δ′ (recall such

codeword exists given the acceptance probability of T). For t = (tj′)j′ ̸=j and f ∈ {w, ŵ, c, ĉ, c′},
let ft : [nj] → FL1×···×Lm denote the column in f where ft(tj) = f(t1, . . . , tm) at any tj . By
an averaging argument, it holds that Prt: tj′←σnj′

[∆S(wt, ct) < δ/4Hn] > 1 − 1
2(δ/Hn)

m and

Prt: tj′←σnj′
[∆S(ŵt, c

′
t) < δ/4Hn] > 1− 1

2(δ/Hn)
m (Definition 3.7). By union bound,

Pr
t
[∆S(wt, ct) < δ/4Hn ∧ ∆S(ŵt, c

′
t) < δ/4Hn] > 1− (δ/Hn)

m.

By the soundness of the base simulator (Lemma 5.11) and the distance of the base code TC
(Lemma 3.8), this implies that Prt: tj′←σnj′

[ĉt ≡ c′t] > 1 − (δ/Hn)
m. Consequently, ∆S(ĉ, c

′) =

Pr(t1,...,tm)←σn1×···×nm
[ĉ(t1, . . . , tm) ̸= c′(t1, . . . , tm)] < (δ/Hn)

m. By the minimal suffix distance of
TCm (Proposition 4.4), we conclude ĉ ≡ ĉ′.

32

5.2.2 Checking Consistency in Flattened Codewords

In the above we show how to shift a message underlying a codeword of TCm given as oracle. The
shifts we can perform are Γj

i , over the m-dimensional coordinate space Nm, along any dimension
j ∈ [m] in the tensor (see Eq. (7)). In contrast, our goal of evaluating the consistency constraints
over codewords of the flattened tensor tree code TCm (which we use in the PCP) involve shifts
over a 1-dimensional coordinate space [n] ⊂ N.

Recall the flattening of the tensor code is carried using the mapping φ : N → Nm from Fig. 4.
The shift t 7→ t−1 over the encoded message coordinates translates, then, to a shift w.r.t. φ over the
message coordinates when “lifted” back to m dimensions, which we denote by preφ(t1, . . . , tm) =
φ(φ−1(t1, . . . , tm)−1). While this function is different, in general, than shifting (t1, . . . , tm) along a
certain dimension, our efforts in the previous section are not in vain. On a closer observation, it holds
that for most of the coordinates (t1, . . . , tm) ∈ Nm, preφ(t1, . . . , tm) is exactly (t1, . . . , tj−1, . . . , tm)

for some j ∈ [m] and, therefore, can be emulated by Γj
i . We can also precisely specify the value

of j corresponding to such a given coordinate (t1, . . . , tm). For that, let us define the predicate
Ψj : Nm → {0, 1} that is 1 on input (t1, . . . , tm) if and only if j is the smallest integer satisfying
tj = minj′ tj′ .

Lemma 5.13. Let (t1, . . . , tm) ∈ Nm be such that tj > 1 for all j. Let j ∈ [m] be the integer
satisfying Ψj(t1, . . . , tm) = 1. Then, it holds that preφ(t1, . . . , tm) = (t1, . . . , tj − 1, . . . , tm).

Proof. Assume (t1, . . . , tm) is “visited” by the recursion in Fig. 4 in step 2 of a recursive call
φr
n that is restricted to a subset of r dimensions D ⊆ [m] (recall each recursive call made in

step 1.3. restricts the traversal to a subset of dimensions D = [m] \ J). If n = 1, then (t1, . . . , tm)

contains a 1. Otherwise, the last coordinate visited by the traversal before (t1, . . . , tm) is n
(1)
j in

the recursive call φ1
n−1 restricted to some dimension j ⊆ D. It holds that Ψj(t1, . . . , tm) = 1

since D = {j | tj = minj′ tj′} and the last subset of D iterated over by the loop is the last
in lexicographic order, which contains all but the smallest j in D. It also holds that this last

coordinate is n
(1)
j = (t1, . . . , tj + 1, . . . , tm) by definition.

Given the above, we may represent the consistency constraint over coordinates t = (t1, . . . , tm)
such that tj > 1 for all j by constraint (EQ1) in Fig. 9.

We complement our understanding of the function preφ by specifying its behavior on all coor-
dinates that are 1 along at least one axis, namely, on “axes-adjacent” coordinates. Let (t1, . . . , tm)
be such a coordinate with ones at some non-empty D ⊂ [m]. Our observation is that although
the predecessor preφ(t1, . . . , tm) might be unreachable form (t1, . . . , tm) by a small number of shifts
tj 7→ tj − 1, it is always reachable from some point on the D-parallel hyperplane that intersects
(t1, . . . , tm). We give a precise characterization in the following.

Lemma 5.14. Let (t1, . . . , tm) ∈ Nm \ {(1, . . . , 1)} be such that D := {j | tj = 1} ̸= ∅. Let
n = minj /∈D tj and H = {j | tj = n} ∪D, and let D′ denote the subset D′ ⊂ H such that H \D′
is the predecessor of H \ D in the lexicographic order over subsets of H (used in Fig. 4). Let
(t′1, . . . , t

′
m) be defined by

t′j =


n− 1 j ∈ D ∩D′

n j ∈ D \D′

tj j /∈ D.
(9)

Then, it holds that preφ(t1, . . . , tm) = (t′1, . . . , t
′
m)− 1D′\D.

33

Consistency Constraints over A,A′ : [n]→ F

For all I ∈ Rect(n):

(EQ1) ∀(t1, . . . , tm) ∈ I s.t. minj tj > 1,

m∑
j=1

Ψj(t1, . . . , tm) · EQ
(
AI(t1, . . . , tm), A′I

(
(t1, . . . , tm)− 1j

))
= 0

(EQ2) ∀ non-empty D ⊂ [m], j ∈ D, (t1, . . . , tm) ∈ I s.t. minj′∈D tj′ > 1,

EQ
(
BD(t1, . . . , tm), BD

(
(t1, . . . , tm)− 1j

))
= 0

(EQ3) ∀ non-empty D ⊂ [m], (t1, . . . , tm) ∈ I s.t. ∀j ∈ D, tj = 1,

EQ
(
BD(t1, . . . , tm), AI(t1, . . . , tm)

)
= 0

(EQ4) ∀ non-empty D ⊂ [m], (t1, . . . , tm) ∈ I,∑
D′⊆[m]

ΦD,D′(t1, . . . , tm) · EQ
(
BD(t1, . . . , tm), A′I

(
(t1, . . . , tm)− 1D′\D

))
= 0

• Ψj(t1, . . . , tm) outputs 1 if and only if j is the smallest integer satisfying tj = min{t1, . . . , tm}.

• ΦD,D′ (t1, . . . , tm) outputs 1 if only if D ∩ D′ = {j | tj = min{t1, . . . , tm}} and D,D′ ⊆ H := {j | tj =
min{t1, . . . , tm}+ 1} and H \D′ is the predecessor of H \D in the lexicographic order over the subsets of H.

Figure 9: Testing that A(t) = A′(t− 1) for all 1 < t ≤ n using constraints over the lifting of A,A′

to m-dimensions.

For intuition, note that (t′1, . . . , t
′
m) is the coordinate that, at any dimension j = 1, . . . ,m, takes

the maximal value among (t1, . . . , tm) and preφ(t1, . . . , tm).

Proof. Such (t1, . . . , tm) is the first coordinate visited by a recursive call to φ
|D|
n−1 over the restriction

to D, which we denote by n
(0)
J in Fig. 4. Further, the call originates from a higher level in the

recursion (either directly from the parent level or indirectly from a higher level) by the traversal

restricted to some H ⊃ D. In particular, in this “ancestor” level, n
(0)
J is set to be (t1, . . . , tm) for

J = H \D.

The last coordinate visited before (t1, . . . , tm) is thus the last coordinate in a recursive call φ
|D′|
n−1

made in the ancestor level over the restriction to the subset D′, where H \ D′ precedes J in the

loop. This coordinate is n
(1)
D′ by the notation of Fig. 4. The lemma follows since n

(1)
D′ is precisely

(t′1, . . . , t
′
m)− 1D′\D by definition.

Given the above, our strategy to test consistency over coordinates (t1, . . . , tm) with some
tj = 1 is to let the prover provide auxiliary variables that form a “bridge” between (t1, . . . , tm)

34

and preφ(t1, . . . , tm) through the hyperplane that intersects (t1, . . . , tm) and is reachable from
preφ(t1, . . . , tm). By Lemma 5.14, there exists such a hyperplane for any (t1, . . . , tm), which is
the hyperplane parallel to D = {j | tj = 1}. Since D comes from a constant-size space (of size
2[m]), we can “pack” all of these bridges in a constant number of tensors, each containing bridges
parallel to some D. Specifically, given an assignment A : [n] → F, we define for any D the word
BD : I(n)→ F, which satisfies the following for any rectangle I ⊆ I(n):

BD(t1, . . . , tm) = AI(t
′
1, . . . , t

′
m), where t′j =

{
1 j ∈ D
tj j /∈ D.

(10)

In words, in BD, we “spread” the A-value from any (t1, . . . , tm) that is “adjacent to the D-axes”,
i.e. where {j | tj = 1} = D, along the D-parallel hyperplane that contains it, i.e. the hyperplane
{(t′1, . . . , t′m) | ∀j /∈ D, t′j = tj}.

Given the “bridges” BD, we check consistency between the remaining coordinates in AI and A′I
by the following tests, which we include in Fig. 9:

(EQ2) Test that any BD is constant over any D-parallel hyperplane.

(EQ3) Test that BD and AI are equal over the coordinates adjacent to the axes of D.

(EQ4) Test that when shifting A′I according to Lemma 5.14, we obtain a coordinate on the D-
parallel hyperplane that is equal to BD. For any non-empty D ⊂ [m] and D′ ⊆ [m], we
define a function ΦD,D′ : Nm → {0, 1} that, on input (t′1, . . . , t

′
m) outputs 1 if and only if,

letting n = minj t
′
j + 1 and H = {j | t′j ≤ n}, it holds that: (i) {j | t′j = n− 1} = D ∩D′,

(ii) D,D′ ⊆ H, and (iii) H \ D′ is the predecessor of H \ D in the lexicographic order
over subsets of H. By Lemma 5.14, for any (t′1, . . . , t

′
m) such that ΦD,D′(t′1, . . . , t

′
m) = 1, it

holds that preφ(t1, . . . , tm) = (t′1, . . . , t
′
m) − 1D′\D, where (t1, . . . , tm) is defined by tj = 1

at j ∈ D and tj = t′j at j /∈ D. Hence, we conclude the test with the constraint.

We conclude with the following lemma, which is implicitly implied by the above discussion.

Lemma 5.15 (Flattened Consistency Constraints). The following two conditions are equivalent
for any A,A′ : [n]→ F:

• A(t) = A′(t−1) for all 1 < t ≤ n for which there exists a rectangle I ∈ Rect(n) that contains
both φ(t) and φ(t− 1).

• There exist {BD : I(n)→ F | D ⊂ [m], D ̸= ∅} such that for every rectangle I ∈ Rect(n), all
constraints in Fig. 9 hold for AI and A′I .

Further, if the former condition holds, then the latter holds with {BD} defined by Eq. (10).

Proof. Suppose there exists t such that A(t) ̸= A′(t − 1) and let I be any rectangle in Rect(n)
that contains both φ(t) = (t1, . . . , tm) and φ(t − 1) = preφ(t1, . . . , tm). Then, it holds that
AI(t1, . . . , tm) ̸= A′I(preφ(t1, . . . , tm)).

If minj tj > 1, then by Lemma 5.13 and Eq. (8), (EQ1) is not satisfied by (t1, . . . , tm) w.r.t.
AI , A

′
I (note for every (t1, . . . , tm) there is a unique j such that Ψj(t1, . . . , tm) = 1).

If D = {j | tj = 1} is non-empty, let (t′1, . . . , t
′
m) and D′ be the coordinate and subset defined

by Lemma 5.14 satisfying preφ(t1, . . . , tm) = (t′1, . . . , t
′
m)−1D′\D. Note that (t

′
1, . . . , t

′
m) is also con-

tained in I since it is bounded by (t1, . . . , tm) or preφ(t1, . . . , tm) at any dimensions j ∈ [m]. Then,
it either holds that (i) AI(t1, . . . , tm) ̸= BD(t1, . . . , tm), or (ii) BD(t1, . . . , tm) ̸= BD(t

′
1, . . . , t

′
m), or

(iii) BD(t
′
1, . . . , t

′
m) ̸= A′I((t

′
1, . . . , t

′
m)− 1D′\D).

35

In the first case, (EQ3) is not satisfied.
In the second case, since (t1, . . . , tm) and (t′1, . . . , t

′
m) reside on the same D-parallel hyperplane,

then there exists (t′′1, . . . , t
′′
m) on the hyperplane where BD(t

′′
1, . . . , t

′′
m) ̸= BD(t

′′
1, . . . , t

′′
j − 1, . . . , t′′m)

for some j ∈ D as otherwise all values on the hyperplane are equal. Hence, Item (EQ2) does not
hold.

Lastly, in the case where BD(t
′
1, . . . , t

′
m) ̸= A′I((t

′
1, . . . , t

′
m)− 1D′\D), (EQ4) is not satisfied since

ΨD,D′(t′1, . . . , t
′
m) = 1 and ΨD,D′′(t′1, . . . , t

′
m) = 0 for any other D′′ ̸= D′ (as D′ is determined

uniquely by (t′1, . . . , t
′
m) and D).

The the other direction follows by inspection: assuming that the first condition in the lemma
holds and let {BD} be as defined in Eq. (10), then (EQ1) follows by Lemma 5.13, (EQ2) and (EQ3)
by the definition of BD and (EQ4) by Lemma 5.14.

We address two minor gaps that are left by Lemma 5.15 towards realizing our goal of consistency
evaluation under codewords.

The first gap is that, in the lemma, we give a representation of the consistency constraint
over all coordinates, except those where no rectangle I ∈ Rect(n) contains both them and their
predecessor under φ. This will be the set of coordinates Bad(n) that we do not cover in the
statement of Lemma 5.8. In the following, we show that the size of Bad(n) is bounded by a
constant.

Lemma 5.16. Let Bad(n) be the set of all coordinates 1 < t ≤ n such that {φ(t), φ(t − 1)} ̸⊆ I
for all I ∈ Rect(n). Then, |Bad(n)| = O(1).

Proof. Let (n1, . . . , nm) = φ(n). Let t ∈ [n] and (t1, . . . , tm) = φ(t). If minj tj > 1, then, by
Lemma 5.13, φ(t− 1) is contained in any I ∈ Rect(n) that contains φ(t).

Otherwise, D = {j | tj = 1} ≠ ∅. Let n∗1 > n∗2 > . . . denote the distinct values in (n1, . . . , nm)
from largest to smallest, and let Ji = {j | nj = n∗i }. Let J ′i = {j | tj = n∗i }.

Let i be the smallest integer such that J ′i precedes Ji, in the lexicographic order over subsets of
[m] \ (

⋃
i′<i Ji) (followed in Fig. 4). Note that since φ(t) ≤ φ(n), it must hold that J ′i′ = Ji′ for all

i′ < i.
Let n′ = minj /∈D tj be the second smallest value in (t1, . . . , tm) and let (t′1, . . . , t

′
m) be as defined

in Eq. (9). (Recall t′j ≤ n′ at all locations j where tj ≤ n′ and is equal to tj otherwise.)
If n′ < n∗i , then (t′1, . . . , t

′
m) also precedes (n1, . . . , nm) in the mapping φ, therefore (t′1, . . . , t

′
m) ∈

I(n) and any rectangle in Rect(n) that contains t′ contains both φ(t) and φ(t− 1) by definition.
The case where n′ = n∗i corresponds to a coordinate (t1, . . . , tm) where: At j ∈

⋃
i′<i Ji, tj = nj

and, at any other j, tj ∈ {1, n∗i }. The number of such coordinates is then bounded by the number
of choices for i′ and a subset of [m]\

⋃
i′<i Ji. Hence, it depends only on m and is constant in n.

The second gap is due to the fact that, on the one hand, we know how to evaluate shift
functions Γj

i only when the length of the tensor at the jth dimension, namely nj , is divisible by 2i

(Lemma 5.12), whereas on the other hand, the constraints in Fig. 9 seem to require applying shifts
over assignments of arbitrary length. (Note that padding the assignments will break monotonicity
and is therefore out of the question.)

We resolve this issue by letting the prover add another set of auxiliary variables (similarly to
{BD} from above) that are always of length suitable for applying the shifts.

Let AI be an assignment over some I = [n1] × · · · × [nm]. For any i ∈ {0, . . . , ⌈log nj⌉}, let
nj(i) = 2i ·

⌊
nj/2

i
⌉
.

36

For any (i1, . . . , im), where ij ∈ {0, . . . , ⌈log nj⌉}, letGi1,...,im := Gi1,...,im(AI) ∈ Fn1(i1)×···×nm(im)

be defined as follows:

Gi1,...,im(t1, . . . , tm) =

{
A(φ−1(t1, . . . , tm)) ∀j, tj ∈ Λij

0 otherwise.
(11)

Notice that Gi1,...,im is well-defined since if tj ≤ nj(ij) and tj ∈ Λij , then tj ≤ nj . (Recall t ∈ Λi

means 2i−1 divides t− 1.)
Given Gi1,...,im , we may rewrite the consistency constraint between AI and the shift of any other

A′I along dimensions J ⊆ [m], over coordinates (t1, . . . , tm) ∈ Λi1 × · · · × Λim where ij = 0 for all
j ∈ J , as follows:

EQ
(
AI(t), A

′
I

(
t− 1J

))
= EQ

(
AI(t), A

′
I(Γi1,...,im(t))

)
= 1−

(
1− EQ

(
AI(t), Gi1,...,im(t)

))
·
(
1− EQ

(
A′I(t), Gi1,...,im(Γi1,...,im(t))

))
. (12)

Importantly, the above transformation is sound: If the left-hand side is non-zero (meaning
inequality), then the right-hand side is non-zero even when replacing Gi1,...,im with any arbitrary
binary function. The above observations imply the following lemma.

Lemma 5.17. For any A,A′ : [n]→ {0, 1}, I ∈ Rect(n) and i1, . . . , im such that ij ∈ {0, . . . , ⌈log nj⌉},
Eq. (12) holds for Gi1,...,im as defined in Eq. (11). Further, if the LHS of the equation is 1, then
the RHS is 1 for any choice of Gi1,...,im.

5.2.3 Evaluating The Coefficients Ψ and Φ

In Fig. 9, we formulate the consistency constraints over assignments as low-degree constraints over
their corresponding lifting to m dimensions and their shifts. The low-degree constraints involve
coefficients defined by the binary functions {Ψj} and {ΦD,D′} over the coordinate space. For the
verifier to locally evaluate the constraint-evaluation codewords as desired (Lemma 5.8), he must be
able to locally evaluate the codewords encoding these coefficients. (Given the code TCm is linear,
multiplication (Propositions 5.4 and 5.7) and allows evaluating shifts (Lemma 5.12), this is also the
only remaining component.)

Although the coefficients are independent in the prover’s statement and, in fact, can be locally
computed by the verifier (by simply computing the above predicates on any given coordinate),
it is not clear if the verifier can locally compute any location in a TCm-codeword encoding the
coefficients. Instead, we let the prover provide these encodings to the verifier, together with a proof
of their validity.

For a function f : [n1] × · · · × [nm] → F (think of f ∈ {Ψj ,ΦD,D′}), let Cf be the circuit
that takes as input (b(t1), . . . ,b(tm)) ∈ {0, 1}M where M =

∑
j ⌈log nj⌉ – recall this is the bi-

nary representation of (t1 − 1, . . . , tm − 1) – and a value F ∈ {0, 1} and outputs 1 if and only if
f(t1, . . . , tm) = F .

To validate that a certain codeword F : [n1]×· · ·×[nm]→ F encodes the output of Cf , it suffices
to verify satisfiability of Cf under all assignments (b(t1), . . . ,b(tm), F (t1, . . . , tm)). Lemma 5.1
already provides us with a set of constraints Eval(n,Cf) that express satisfiability of Cf by a given
assignment and can be evaluated “under codewords”. Equipped with this machinery, to prove that
a codeword F̃ : [n]→ Σ encodes F : [n1]× · · · × [nm]→ F, the prover additionally encodes:

• T 1, . . . , TM : [n1]×· · ·×[nm]→ F where (T 1(t1, . . . , tm), . . . , TM (t1, . . . , tm)) = (b(t1), . . . ,b(tm)).

37

• W 1
f , . . . ,W

K
f : [n1] × · · · × [nm] → F, witnesses for Eval(n,Cf) computed w.r.t. assignments

(T 1, . . . , TM , F), as induced by Lemma 5.1.

It remains to show how to test that the encoded T 1, . . . , TM indeed compose the binary represen-
tation of the coordinate space.

Let bi(t) denote the ith least significant bit in b(t). We want to test whether T (t1, . . . , tm) ≡
bi(tj), for a given T : [n] → F and j ∈ [m], i ⌈log nj⌉. We express this equality using constraints

that again involve the degree-2 function EQ and the shift functions Γj
i . To that end, we observe

that bi(t) is the unique binary function over N that: (i) evaluates 0 at t = 1, (ii) gives equal values
at t and Γi′(t) for any t and i

′ < i, and (iii) gives distinct values at t and Γi′(t) for any t and i
′ ≥ i.

T-Constraints for T : [n1]× · · · × [nm]→ {0, 1}

(T1) ∀(t1, . . . , tm) ∈ [n1]× · · · × [nm] s.t. tj = 1,

T (t1, . . . , tm) = 0

(T2) For i′ = 1, . . . , i− 1, ∀(t1, . . . , tm) ∈ [n1]× · · · × [nm],

EQ
(
T (t1, . . . , tm), T

(
Γj
i′(t1, . . . , tm)

))
= 0

(T3) For i′ = i, . . . , ⌈log nj⌉, ∀(t1, . . . , tm) ∈ [n1]× · · · × [nm],

EQ
(
T (t1, . . . , tm), 1− T

(
Γj
i′(t1, . . . , tm)

))
= 0

Figure 10: Testing that T (t) = bi(tj) for all t = (t1, . . . , tm).

Lemma 5.18 (T-Constraints). Let T : [n1]× · · · × [nm]→ {0, 1}. Then, T (t1, . . . , tm) = bi(tj) for
all (t1, . . . , tm) ∈ [n1]× · · · × [nm] if and only if T satisfies all constraints in Fig. 10.

Proof. It is by inspection that T ≡ bi(tj) satisfies all constraints in Fig. 10. For the other direction,
assume T (t1, . . . , tm) ̸= bi(tj) at some t = (t1, . . . , tm). Consider the sequence of coordinates
tr = (t1, . . . , t

r
j , . . . , tm) for r = ⌈log tj⌉+ 1, . . . , 1, where trj is defined inductively as follows:

1. t
⌈log tj⌉+1
j = tj .

2. trj = Γr(t
r+1
j) if br(tr+1

j) = 1 and trj = tr+1
j otherwise.

It holds that t1j = 1 and therefore bi(t1j) = 0. If T (t1) ̸= bi(t1j), then T (t1) ̸= 0 and (T1) does

not hold. Otherwise, let i′ be the largest value of r such that T (tr) = bi(trj). If bi
′
(ti

′+1
j) = 0

then ti
′
= ti

′+1 by definition and T (ti
′+1) = T (ti

′
) = bi(ti

′
j) = bi(ti

′+1
j), in contradiction to the

maximality of i′. If bi
′
(ti

′+1
j) = 1 then ti

′
= Γj

i′(t
i′+1) and we again split to two cases: If i′ < i,

then bi(ti
′
) = bi(ti

′+1) and, by definition of i′, T (ti
′+1) ̸= T (ti

′
) thus breaking (T2). If i′ ≥ i, then

bi(ti
′
) = 1− bi(ti

′+1) and T (ti
′+1) = T (ti

′
), breaking (T3).

38

5.2.4 Proof of Lemma 5.8

Before laying down the set of constraints EQ, let us first describe the variables W 1, . . . ,WK over
which they are applied, besides the variables A,A′. Although the W i are defined in the lemma
to be over [Ni], it is more natural to think about some of them as functions over m-dimensional
domains of size Ni. We also describe the values W 1

A, . . . ,W
K
A that these variables take to attest

that a given pair of assignments A,A′ is consistent (note the witnesses are a function of A alone):

1. For any non-empty D ⊆ [m],
BD : IBD(n)→ F,

where IBD(n) =
⋃

[n1]×···×[nm]∈Rect(n)[n̂1] × · · · × [n̂m], for n̂j = nj for j /∈ D and, for j ∈ D,
n̂j is the smallest power of 2 that is at least nj .
Given A, we define BD := BD(A) as in Eq. (10) (note it is well-defined over IBD(n)).

2. For any i1, . . . , im such that ij ∈ {0, . . . , ⌈log n′j⌉} for n′j = max(t1,...,tm)∈I(n) tj ,

Gi1,...,im : IGi1,...,im(n)→ F,

where Îi1,...,im(n) =
⋃

[n1]×···×[nm]∈Rect(n)[n1(i1)] × · · · × [nm(im)] and, recall, nj(i) = 2i ·⌊
nj/2

i
⌉
.

Given A, we define Gi1,...,im := Gi1,...,im(A) to be consistent with Eq. (11) for all I ∈ Rect(n).

3. T 1, . . . , TM : [N]m → F, where N is the smallest power of 2 that such that I(n) ⊆ [N]m and
M = m · ⌈logN⌉ (by Proposition 4.8, it holds that N ≤ 2

⌈
n1/m

⌉
= O(n1/m)).

The value of any T r in the witness is independent in A,A′ and is always T r(t1, . . . , tm) =
bi(tj), where j = ⌊r/ ⌈logN⌉⌋ and i = r mod ⌈logN⌉.

4. For any f ∈ {Ψj | j ∈ [m]} ∪ {ΦD,D′ | D,D′ ⊆ [m]} (defined in Fig. 9):

4.1. Ff : [Nm]→ F.
The value of Ff in the witness is independent in A,A′ and satisfies Ff (t) = f(φ(t)) for
all t ∈ [Nm] (recall I(Nm) = [N]m).

4.2. W 1
f , . . . ,W

K′
f : [Nm]→ F.

The value of (W 1
f , . . . ,W

K′
1) in the witness is independent in A,A′ and is the witness

for constraints Eval(Cf) w.r.t. assignment (T 1, . . . , TM , f(T 1, . . . , TM)) (Lemma 5.1).

Note that the number K = K(n) of additional variables we have introduced is polylogarithmic
in n (and exponential in the constant m) since n′j ≤

⌈
n1/m

⌉
(Proposition 4.8) and the circuit that

computes Ψj and ΦD,D′ is of size polynomial in its input. Further, the size of each of the new
variables is at most O(n).

Next, we list the constraints in EQ. To that end, we introduce the following notation which
roughly generalizes Rect(n): For any function X, we denote by Rect(X) the set of all maximal
rectangles I ∈ dom(X), i.e. where any rectangle I ′ ⊆ dom(X) is contained in some I ∈ Rect(X)
and, further, any I ′ ∈ Rect(X) is not contained in any other rectangle in Rect(X) but itself.
Crucially to us, for any W i in the list of witnesses above, Rect(W i) ≤ 2m due to Proposition 4.8.
(In the following, we define the rectangle R in any (P,R) ∈ EQ as a function of n. However, the
construction implicitly defines an infinite rectangle R that complies with the syntax of the lemma.)

39

1. (Z-Constraints) For any X ∈ {A,A′} ∪ {Gi1,...,im} ∪ {T i} and any I ∈ Rect(X),

(ZX,I ,Nm) ∈ EQ,

where ZX,I(A,A
′,W 1, . . . ,WK) : I → F is the function that evaluates XI(t)(1 − XI(t)) at

all t ∈ I. Recall this is the degree-2 polynomial that is identically zero if and only if XI is
Boolean (similarly to Eq. (5)).

2. (EQ-Constraints) We add the constraints derived from Fig. 9, via Eq. (8) and Lemma 5.17:

(EQ1) For any I = [n1]× · · · × [nm] ∈ Rect(n) and i = (i1, . . . , im) s.t. 0 ≤ ij ≤ ⌈log(nj)⌉,

(EQ
(1)
I,i1,...,im

, R
(1)
i1,...,im

) ∈ EQ,

where EQ
(1)
I,i1,...,im

(A,A′,W 1, . . . ,WK) : I → F evaluates

m∑
j=1

(FΨj)I(t)·
(
1−

(
1− EQ

(
AI(t), G0,...,ij ,...,0(t)

))
·
(
1− EQ

(
A′I(t), G0,...,ij ,...,0(Γ0,...,ij ,...,0(t))

)))
at any t ∈ I, and R(1)

i1,...,im
= {(t1, . . . , tm) | tj ∈ Λij , tj > 1 ∀j}.

(EQ2) For any non-empty D ⊂ [m], any I = [n1]×· · ·× [nm] ∈ Rect(BD), any j ∈ D, and any
0 ≤ ij ≤ log(nj) (recall nj is a power of 2),

(EQ
(2)
I,D,j,ij

, R
(2)
D,j,ij

) ∈ EQ,

where EQ
(2)
I,D,j,ij

(A,A′,W 1, . . . ,WK) : I → F evaluates

EQ
(
BD(t), BD

(
Γ0,...,ij ,...,0(t)

))
at any t ∈ I, and R(2)

D,j,ij
= {(t1, . . . , tm) | tj ∈ Λij , tj′ > 1 ∀j′ ∈ D}.

(EQ3) For any I ∈ Rect(n) and non-empty D ⊂ [m],

(EQ
(3)
I,D, R

(3)
D) ∈ EQ,

where EQ
(3)
I,D(A,A

′,W 1, . . . ,WK) : I → F evaluates EQ
(
BD(t), AI(t)

)
at any t ∈ I, and

R
(3)
D = {(t1, . . . , tm) | tj = 1 ∀j ∈ D}.

(EQ4) For any I ∈ Rect(n), non-empty D ⊂ [m] and i = (i1, . . . , im) s.t. 0 ≤ ij ≤ ⌈log(nj)⌉,

(EQ
(4)
I,D,i1,...,im

, R
(4)
i1,...,im

) ∈ EQ,

where, letting i(J) = (i′1, . . . , i
′
m) be i′j = ij if j ∈ J and i′j = 0 otherwise, the function

EQ
(4)
I,D,i1,...,im

(A,A′,W 1, . . . ,WK) : I → F evaluates∑
D′⊆[m]

(FΦD,D′)I(t) ·
(
1−

(
1− EQ

(
BD(t), Gi(D′\D)(t)

))
·
(
1− EQ

(
A′I(t), Gi(D′\D)(Γi(D′\D)(t))

)))

at any t ∈ I, and R(4)
i1,...,im

= {(t1, . . . , tm) | tj ∈ Λij ∀j}.

40

3. (T-Constraints) For any r ∈ [M], we add to EQ the constraints from Fig. 10 over T r (where
n1 = · · · = nm = N), with j = ⌊r/ ⌈logN⌉⌋ and i = r mod ⌈logN⌉. Note the figure defines
1 + ⌈logN⌉ constraints over T r in total.

4. (Coefficient Evaluation Constraints) For f ∈ {Ψj | j ∈ [m]} ∪ {ΦD,D′ | D,D′ ⊆ [m]}, we add
all constraints from Eval(Nm) over T 1, . . . , TM , Ff and W 1

f , . . . ,W
K′
f .

Correctness (both completeness and soundness) follows, by inspection, from Lemmas 5.1, 5.15,
5.17 and 5.18.

In any constraint (P,R) ∈ EQ(n), the function E = P (A,A′,W 1, . . . ,WK) : I → F has the form
E(t) = p(AI(t), A

′
I(t), Ŵ

1(t), . . . , ŴK(t)), where p is a polynomial over F of degree at most 5 and

Ŵ i =W i◦Γi1,...,im for some i1, . . . , im where 2ij divides the length of the jth dimension in the tensor
W i for all j. This allows applying the Γ shifts over W i under their TCm encoding (Lemma 5.12).
Given additionally the linearity of the code and its multiplication property (Propositions 5.4, 5.6
and 5.7), which allow us to evaluate degree-5 polynomials, we obtain the simulator V .

To apply the shifts over anyW i via Lemma 5.12, V requires access to the encoding (TC+)m(W i),

which can be given by W̃ i = TCm(W i) and an additional oracle Y i. Consequently, we define the
additional oracle Y given to V to be Y = (Y 1, . . . , Y K), which is a function of A since any W i is.
To ensure a sound simulation, V runs the tester T from Lemma 5.12 λ = log2m+3(n)/δm+1 times

over any (W̃ i, Y i). If any of the tests rejects, V outputs ⊥.
Take ϵ = O(δm+1/ log2m+1(n)) as in Lemma 5.12. If Pr[T W̃ i,Y i

= 0] > ϵ then the probability

that V does not output ⊥ is at most (1 − ϵ)λ = e−Ω(log2 n). Otherwise, by the lemma, the word
that A computes is ((δ/Hn)

m+1/8)-close to Ŵ i.
Since any p involves a constant number of monomials (at most 2m), performing addition and

multiplication over corrupted codewords to evaluate p incurs at most a constant blow-up in cor-
ruptions in the evaluation word, compared to the corresponding closest codeword. Overall, we
conclude that V simulates V with access to a word that is O(1/ logm+1(n))-far from Ẽ. (In any
case, V may additionally apply the local tester from Theorem 4.5 over the alleged encoding of Ŵ i,
which is computed by A, to further reduce its presumed distance from the code. The test can be
performed while simulating access to the word using A.)

The query complexity of the tests that V performs isO(n2/m logm n) for eachW i, andO(n2/mpolylog(n))
in total. To simulate any query that V makes, V calls the algorithm A, which has complexity at
most O(logm(n)), a constant number of times.

6 The Zero Test

In Section 5, we express the transition and consistency constraints over the assignments in the tree
PCP (Fig. 1) as a conjunction of constraints of the form ER ≡ 0, where E is an m-dimensional
tensor over a rectangle I ⊂ Nm and R ⊆ I is a sub-rectangle. Given the codewords Ẽ can be
evaluated locally given access to codewords encoding the assignments (Lemmas 5.1 and 5.8), we
now show how to efficiently test statements of the form ER ≡ 0.

Our goal in general is to design a “zero test” for tree code tensors. In the test, the verifier is given
oracle access to a codeword c ∈ TCm, that systematically encodes a message x : [n1]×· · ·×[nm]→ F
(see Section 3.2), and a proof π which allows him to test whether x is all zeros over a certain rectangle
T = T1×· · ·×Tm, i.e. if xT ≡ 0. Additionally, to make the zero test applicable to our tree PCPs, we
require that the test satisfies monotonicity: we want that a valid proof π for a statement (c, T) can
be extended to a valid proof for any “extension” of the statement, i.e. (c′, T ′) such that c′(T ′) ≡ 0
where c ⊆ c′, T ⊆ T ′, and T ′ \ T does not contain elements in the domain of c.

41

Recall that Ẽ above is a codeword in a multiplication code that does not have an explicit en-
coding function. Consequently, we shall not assume in the following such an encoding function.
However, the message x encoded by a given codeword c is well-defined (Remark 4.12 and Proposi-
tions 5.6 and 5.7), and we denote c ∈ TC(x) (or c ∈ TCm(x) in the tensor case).

As usual, we think of the codeword oracle as a function c : [n1]× · · · × [nm]→ FL(n1)×···×L(nm).
We denote for brevity Lj := L(nj) and n := maxj nj .

Lemma 6.1 (Zero Test). Let F = {F(n)} be such that F(n−1) ⊆ F(n) and let m ≥ 2 be a constant
such that |F(0)| > m2/(m − 1). Let TC = {TCn ⊂ (F(n)L(n))n} be a systematic linear tree code
over F with tree distance δ.

Assume there exists a linear tree code with an explicit encoding function T̂C : F(0)n → (F(n)L̂(n))n,
where encoding a length-n message takes time nτ .

Than, there exists a probabilistic verifier V that takes as input a rectangle T = T1× · · · × Tm ⊂
[n1] × · · · × [nm], has oracle access to a codeword c ∈ TCm(x) and a proof π, and satisfies the
following for any x : [n1]× · · · × [nm]→ F:

– (Completeness) If xT ≡ 0, there exists a proof oracle π such that Pr[V c,π = 1] = 1. We say
that such a proof is an accepting proof for (c, T).

– (Soundness) If xT ̸≡ 0, for any proof oracle π, Pr[V c,π = 1] < n−Ω(logn).

– (Query Complexity) V c,π makes a total of O
((
|T1|+ · · ·+ |Tm|

)
· (log(n)/δ(n))2m+2

)
queries

to its oracles.

Additionally:

– (Incrementality) For any (possibly infinite) rectangle T ⊆ Nm, there exists an (L(n)mL̂(n)m ·
nτ/m,m · L(n)mL̂(n)m)-incremental ensemble of proofs {πc,T | c ∈ TCm(x), x : [n1] × · · · ×
[nm]→ F s.t. nj ∈ N ∀j, xT∩dom(x) ≡ 0} where πc,T is accepting for (c, T ∩ dom(x)).

Following classic PCP constructions [BFL90, BFLS91], our zero test proof oracle is derived by
an interactive protocol between a verifier and a prover for proving xT ≡ 0, which is based on the
sumcheck protocol [LFKN92]. Jumping ahead, we will later “flatten” this interactive protocol into
a tree PCP. In the protocol, the statement xT ≡ 0 is first reduced to a statement of the form∑

t1∈T1

α1,t1 · · ·
∑

tm∈Tm

αm,tm · c(t1, . . . , tm) = u, (13)

for some αj,tj ∈ F and u ∈ FL1×···×Lm . Indeed, think of a verifier that at the beginning sends
uniformly random {αj,tj} ← F and asks the prover to prove Eq. (13) with u that has a zero in the
systematic part (which is a single coordinate over F). If xT ≡ 0, then all symbols in the sum have
a zero in the systematic coordinate and, therefore, so has their sum. If xT ̸≡ 0, then Eq. (13) holds
with probability at most 1 − (1 − 1/|F|)m ≈ m/|F| over the choice of random coefficients and u.
(Crucially to our final goal, we will later see how to sample good-enough coefficients using much
less randomness.)

To prove Eq. (13), the prover and verifier engage in a sumcheck protocol. The sumcheck protocol
we build on is an adaptation of standard sumcheck, specifically its generic form for general tensor
codes from [Mei13]. We devise an analogous protocol for tree code tensors, keeping in mind the
eventual goal of attaining a monotone proof oracle for the zero test.

42

6.1 Sumcheck for Tree Code Tensors

In our sumcheck protocol for tree code tensors, the verifier is given oracle access to a codeword
c ∈ TCm and the goal of the prover is to prove Eq. (13) holds with {αj,tj} that are given as input
to both parties.

The protocol consists of m rounds of interaction where, at the jth round, the sum over Tj is
replaced by a sum over a small set Rj ⊂ [nj] of size λ = (2Hn log(m))/δ′ for δ′ = δ− ϵ, where ϵ > 0
is an arbitrarily small constant. Concretely, we reduce a statement of the form∑

r1∈R1

β1,r1 · · ·
∑

rj−1∈Rj−1

βj−1,rj−1 ·
∑
tj∈Tj

αj,tj · · ·
∑

tm∈Tm

αm,tm · c(r1, . . . , rj−1, tj , . . . , tm) = uj (14)

to a smaller statement of the form∑
r1∈R1

β1,r1 · · ·
∑

rj−1∈Rj−1

βj−1,rj−1 ·
∑
rj∈Rj

βj,rj · · ·
∑

tm∈Tm

αm,tm · c(r1, . . . , rj , tj+1, . . . , tm) = uj+1, (15)

We start with u1 = u and, after the mth round, we are left with the following statement∑
r1∈R1

β1,r1 · · ·
∑

rm∈Rm

βm,rm · c(r1, . . . , rm) = um+1,

which V can verify with λm queries to c.11

We now describe the jth round of the protocol. Recall, by this point, we have a statement of
the form of Eq. (14) in hand. In particular, the value uj , the sets R1, . . . , Rj−1 and the elements
{βj,rj}, . . . , {βj−1,rj−1} have been already determined and are known to both parties.

1. P computes the truth table of the function dj : [nj]→ FL1×···×Lm defined as

dj(t) =
∑

r1∈R1

β1,r1 · · ·
∑

rj−1∈Rj−1

βj−1,rj−1 ·
∑

tj+1∈Tj+1

αj+1,tj+1 · · ·
∑

tm∈Tm

αm,tm ·c(r1, . . . , rj−1, t, tj+1, . . . , tm),

(16)
and sends it to V . Denote the prover’s message by dj .

2. V verifies that
∑

t∈Tj
αj,tdj(t) = uj and, in the partition of dj to L′ =

∏
j′ ̸=j Lj′ functions

d
1
j , . . . , d

L′

j : [nj]→ FLj such that dj(t) = (d
1
j (t), . . . , d

L′

j (t)), any dj is a codeword in TC.

3. V samples Rj as a subset of λ i.i.d. random coordinates r ← σnj (Definition 3.7) and, for
any r ∈ Rj samples uniform βj,r ← F and sends it to P .

4. Proceed to prove the statement in Equation (15) w.r.t. Rj and {βj,r} chosen above and

uj+1 =
∑
r∈Rj

βj,r · dj(r). (17)

11Here lays the main difference from classical sumcheck, where λ = 1. Per-round amplification is needed here since,
in probabilistically testing tree distance using the suffix distribution, we inherently loose a Hn = ω(1) factor (by the
tightness of Lemma 3.8). This is in contrary to testing Hamming distance where the probability of disagreement at
a uniformly random location is exactly the Hamming distance. Since we need the soundness error at any round to
be small enough for a non-trivial union bound over the m rounds, ω(1) loss is unaffordable.

43

Completeness follows easily since, for any j ∈ [m], an honest dj = dj is indeed a concatenation
of codewords in TC due to the structure of tensor codes (Remark 4.2) and their linearity. Soundness
is by the fact that if Equation (14) does not hold at some round j, then Equation (15) holds only
with low probability over the choice of the random Rj and βj,rj from Step 3 and uj as defined in
Equation (17). Given this, the argument is complete by a union bound over j = 1, . . . ,m.

To see why the implication holds, notice that dj is a (pointwise) concatenation of L′ =
∏

j′ ̸=j Lj′

codewords of TC (otherwise, V rejects) and therefore the tree distance between dj and dj over
one of the L′ “slices” is at least δj . (The two columns are necessarily distinct over one of the
slices since, otherwise, V rejects at Step 2.) By Lemma 3.8, this implies that the suffix distance
between dj and dj over the slice is at least (δ(nj)− o(1))/Hnj . Hence, by definition, it holds that

Pr[dj(r) = dj(r)] ≤ 1 − (δ(n) − o(1))/Hn for a coordinate r sampled from the suffix distribution
σnj . Since Rj is a subset of λ i.i.d. such coordinates, it holds that

Pr[dj(Rj) = dj(Rj)] ≤ (1− (δ(n)− o(1))/Hn)
λ < e−δ

′λ/Hn < 1/m2. (18)

Now, assuming dj(Rj) ̸= dj(Rj) and, hence, d∆ = di(Ti) − di(Ti) ̸≡ 0, it holds that a uniform
linear combination of the coordinates in d∆ gives zero with probability at most 1/|F|. Therefore,

Pr[
∑
rj∈Rj

βj,Rj · dj(rj) = ui+1] = 1/|F|.

By the above and Equation (18), we conclude that the soundness error in one round is less than
1/m2 + 1/|F| and, therefore, at most 1/m+m/|F| overall, which is a constant smaller than 1.

6.2 The Zero Test Proof Oracle

The general idea for turning the interactive zero test into a proof oracle is to write down all possible
transcripts of the protocol, corresponding to any configuration of the verifier’s random coins. The
size of the proof here grows exponentially with the randomness complexity of the verifier. In the
interactive zero test, the verifier samples three types of challenges: the uniform coefficients {αj,tj}
in the first round (before sumcheck) and the set of locations Rj and coefficients {βj,rj} at round
j = 1, . . . ,m of the sumcheck. In a naive implementation, the number of all possible configurations
these values can take is far bigger than what we can afford to write in our proof oracle. We are
nevertheless able to obtain the desired proof size by two observations.

First, we observe that transcripts corresponding to different values of Rj and {βj,rj} may be
represented by a small basis of transcripts that span them linearly. Including the basis in the oracle
is enough since the verifier may simulate access to any possible transcript by querying few locations
across the basis. Second, we revisit the goal of the coefficients {αj,tj} and recall that they serve
to reduce the statement xT ≡ 0 to a sumcheck statement. Using uniformly random coefficients is
wasteful here. What we essentially want is a relatively small set of vectors {αj = (αj,1, . . . , αj,|Tj |)}
such that Prj [αj · x′ = 0] is small for all x′ ̸= 0|Tj |. This is equivalent to the existence of linear
error-correction codes with good rate and distance. Letting the αj ’s be the rows of a generator
matrix of a block error-correction code with rate ρ and relative Hamming distance δ, gives a set
of size |Tj |/ρ and probability of 1 − δ to “miss a zero”. (Conversely, a good derandomization set
implies a good error-correction code.) This solution could have worked for us, except we do not
know how to directly use it to obtain a monotone proof oracle. Not surprisingly, this can be made
possible by replacing the block error-correction code with a tree code that has an explicit efficient
encoding function.

44

We now formally describe the proof oracle for the zero test. Let G = {Gn ∈ FLn×n} be a

(block lower-triangular) generator matrix of T̂C (Remark 3.6). Let t1j < t2j < · · · < t
|Tj |
j denote the

elements of Tj . Given a codeword c ∈ TCm(x) satisfying xT ≡ 0, an accepting proof π is composed
by oracles π1, . . . , πm−1 where, for j = 1, . . . ,m− 1, (letting L̂j = L̂(|Tj |) ≤ L̂(nj))

πj : [n1]× · · · × [nj]× [L̂j+1 · |Tj+1|]× · · · × [L̂m · |Tm|]→ FL1×···×Lm ,

πj(t1, . . . , tj , ij+1, . . . , im) =

|Tj+1|∑
kj+1=1

G(ij+1, kj+1) · · ·
|Tm|∑
km=1

G(im, km) · c(t1, . . . , tj , t
kj+1

j+1 , . . . , t
km
m).

(19)

Notice that πm = c. The total size of the proof π is bounded bym·(
∏m

j=1 LjL̂j)nj field elements. To
see why the construction satisfies incrementality, observe that at any πj is essentially an encoding
of x by a tensor tree code. For j = 1, . . . ,m, let TC′j denote the tree code that on input message

y : [n] → FLj , slices it into Lj messages y1, . . . , yLj : [n] → F and applies the tree code T̂C over

the restriction of any yr to Tj to obtain wr : [L̂j · |Tj |] → F and their (point-wise) concatenation

w ∈ FLjL̂j |Tj | which we view as w : [L̂j · |Tj |]→ FLj . It holds that w(i) =
∑|Tj |

k=1G(i, k) · y(t
k
j). We

may write, then
πj =

(
Ij ⊗ TC′j+1 ⊗ · · · ⊗ TC′m

)
(c).

While Definition 4.1 talks about m-fold tensor products that involve the same code, the definition
straight-forwardly generalizes to the tensor product of different tree codes, preserving the structure
of the code and its properties, e.g. Remarks 4.2 and 4.3. In particular, the incrementality of the
proof oracles πj follow from the incrementality of tensor tree codes (Remark 4.3).

We next describe the verifier. (In fact, the following is a “base verifier” that suffers from
large soundness error, which we later amplify via standard repetition.) The verifier views its proof
oracle as a composition of such m oracles π = (π1, . . . , πm). For j = 1, . . . ,m, the verifier samples
ij ← σLjnj , a random subset Rj that consists of λ i.i.d. r ← σ|Tj | and uniformly random coefficients

(βj,r)r∈Rj ← Fλ. Let dj : [nj]→ FL1×···×Lm denote the following function

dj(t) =
∑

r1∈R1

β1,r1 · · ·
∑

rj−1∈Rj−1

βj−1,rj−1 · πj(r1, . . . , rj−1, t, ij+1, . . . , im).

Note that the verifier can read dj entirely using λj−1 queries to πj and, in particular, can read dm
using λm−1 queries to c. The verifier accepts if and only if, for all j and, dj is a concatenation of∏

j′ ̸=j Lj codewords in TC (akin to Step 2 in the interactive sumcheck), and

|Tj |∑
k=1

G(i1, k) · d1(tkj) = u, (20)

for u that has zero at the systematic coordinate and, for j = 2, . . . ,m,

|Tj |∑
k=1

G(ij , k) · dj(tkj) =
∑

r∈Rj−1

βj−1,r · dj−1(r). (21)

Notice that if the oracles π1, . . . , πm are indeed constructed as in Eq. (19), then dj is equal to dj
from an honest execution of the sumcheck protocol with αj,tkj

= G(ij , k) (see Eq. (16)). Further, the

45

verifier’s checks precisely imitate the sumcheck verifier; Eq. (20) for the first round in the sumcheck
protocol and Eq. (21) for all subsequent rounds (specifically Step 2 of the protocol). Hence, we can
indeed think of the interaction between the verifier and the proof oracle here as a simulation of the
sumcheck protocol for the statement

|T1|∑
k1=1

G(i1, k1) · · ·
|Tm|∑
km=1

G(im, km) · c(tk11 , . . . , t
km
m) = u. (22)

Completeness then follows immediately by the completeness of sumcheck since xT ≡ 0 implies
Eq. (22) with u that has a “systematic zero”. For soundness, we argue that Eq. (22) holds with
bounded probability with such a u when xT ̸≡ 0. Let (t∗1, . . . , t

∗
m) ∈ T denote a non-zero coordinate

in x. Consider the sum
|Tm|∑
km=1

G(im, km) · c(t∗1, . . . , t∗m−1, tkmm).

The systematic coordinate in the sum is just the inner product of the non-zero vector x(t∗1, . . . , t
∗
m−1, Tm) ∈

F|Tm| with the ithm row from the generator matrix of T̂C. Thus, we are essentially looking at the

ithm coordinate of a non-zero codeword in T̂C of length |Tm|. Since im is sampled from the suffix
distribution σ|Tm|, it holds by Lemma 3.8 that the above sum has a non-zero systematic coordinate
with probability at least δ(|Tm|)/H|Tm| < δ(n)/Hn. By carrying on with this argument inductively
until we arrive to the sum from Eq. (22), we conclude that the coordinate is zero with probability
at most 1− (δ(n)/Hn)

m. In the case this does not occur, i.e. that the choice of i1, . . . , im leave the
verifier with a false sumcheck statement to verify, our analysis in Section 6.1 shows that he accepts
with probability at most α for some constant α < 1. Overall, the verifier accepts a false statement
with probability at most 1− (1−α)(δ(n)/Hn)

m. The probability that λ′ independent repetitions of
the verification all accept is at most e−(1−α)K(δ(n)/Hn)m . There exists, then, λ′ = O((Hn/δ(n))

m+2)
such that the soundness error is at most n−Ω(logn).

In one invocation of the above verification, the verifier performs at most
∑m

j=1 λ
j−1|Tj | queries

to its oracles c and π. The query complexity of λ′ repetitions is then O
(
mλ′·λm·(|T1|+· · ·+|Tm|)

)
=

O
(
(m logm) · (Hn/δ(n))

2m+2 · (|T1|+ · · ·+ |Tm|)
)
.

7 The Tree PCP

We put together the components from Sections 4 to 6 to construct a tree PCP and prove our main
result from Theorem 1.5.

Let (C, a, n) ∈ CktReach be a circuit reachability instance (Eq. (1)). We describe an accepting
proof for (C, a, n), which can be efficiently computed given a witness (a1, w1, . . . , an, wn) such that
C(at−1, at, wt) = 1 for all 1 ≤ t ≤ n (where a0 = 0s), and also satisfies monotonicity. Then, we
describe the PCP verifier and prove its soundness.

The tree PCP is parametrized by a constant m ∈ N which can be arbitrarily increased to reduce
asymptotic complexity. In particular, for sublinear complexity (queries and proof length per step),
we shall choose m ≥ 5.

7.1 The Proof Oracle

Let At = (at−1, at, wt) ∈ {0, 1}3s and denote by Ai : [n] → F the column satisfying Ai(t) = At(i)
for all t ∈ [n]. Let W = {W 1, . . . ,WK} be the set that contains the witnesses for Eval(C)

46

corresponding to A1, . . . , A3s (induced by Lemma 5.1) and, for i = 1, . . . , s, the witnesses for EQ(n)
corresponding to the pair Ai and Ai+s (Lemma 5.8). It holds that K = poly(|C|) + s · polylog(n).
We denote by N = O(n) the upper bound on the length of any W i and assume for simplicity and
w.l.o.g. that W i : [N]→ F for all i (smaller witnesses can be padded with zeros).

An accepting proof π for (C, a, n) consists of the following:

1. For i = 1, . . . , 3s and j = 1, . . . ,K,

Ãi = TCm(Ai) W̃ j = TCm(W j).

2. For i = 1, . . . , s, the oracle Y i = YAi defined in Lemma 5.8.

3. For any constraint P ∈ Eval(C), letting12 E = P (A1, . . . , A3s,W) ∈ FI and Ẽ ∈ (TC′)m(E)
be obtained by the codeword evaluation in Lemma 5.1, an accepting zero-test proof for (Ẽ, I)
(Lemma 6.1), namely π

Ẽ,I
from the lemma.

4. For any constraint (P,R) ∈ EQ(n) and any i = 1, . . . , s, letting12 E = P (Ai, Ai+s,W) ∈ FI

and Ẽ ∈ (TC′)m(E) be obtained by the codeword evaluation in Lemma 5.8, an accepting
zero-test proof for (Ẽ, R), namely π

Ẽ,R
.

Overall, the PCP for (C, a, n) consists of: 3s · K = poly(log(n), |C|) codewords in TCm of
length O(n) over an alphabet of size polylog(n), s Y -oracles of size n · polylog(n) each and
poly(log(n), |C|) zero-test proof oracles over statements of size O(n) (there are poly(log(n), |C|)
constraints in Eval(C) ∪EQ(n) in total). Its total length, then, is n · poly(log(n), |C|).

The PCP is also incremental in an amortized sense: The proof for (C, an, n) can be generated
by computing a proof for (C, an−1, n−1) then extending it, and this takes time O(n1+γ ·poly(|C|))
in total. This is due to the monotonicity of the witnesses W i, the oracles Y i and the evaluation
vectors E (Lemmas 5.1 and 5.8) and their complexity (Remark 5.9), and the incrementality of the
zero tests (Lemma 6.1) and of tensor tree codes (Remark 4.3).

In fact, the only reason the tree PCP does not attain incrementality in the strict sense of
Theorem 1.5 is that the witnesses W i and the evaluation vectors E, corresponding to EQ, are not
incremental in the assignments. If they were, we would obtain a properly incremental tree PCP by
the incrementality of all other components.

While W i, E from EQ are not incremental, they are monotone and very efficient to compute
given the assignments (Lemma 5.8 and Remark 5.9): Every new symbol can be computed by
accessing a single coordinate in A1, . . . , A3s. The only problem is that many symbols may be added
to any suchW i, E at once, upon appending a single new value to each of A1, . . . , A3s. Indeed, their
length is only proportional to n and does not match it exactly. If we manage to de-amortize the
extension of these W i, E and extend them by, say, O(1) new symbols at every step, then we can
obtain an (nτ/m · poly(log(n), |C|), poly(log(n), |C|))-incremental PCP, matching the theorem. In
Section 7.3, we show how to de-amortize any W i and E and, therefore, the tree PCP construction.

7.2 The Verifier

Given an input (C, a, n) and access to a proof π, the verifier V performs the following:

1. Perform the local test T from Proposition 4.10 over Ãi, for all i = 1, . . . , 3s, and W̃ j , for all
j = 1, . . . ,K, λ = log2m+2(n) times each.

12 More accurately, P takes only a subset of W as input.

47

If any of the tests rejects, the verifier rejects. Otherwise, the verifier runs the following while
simulating any query to any F ∈ {Ãi, W̃ j} using the relaxed local corrector C from Lemma 4.9
over FI , for some I ∈ I(|F |) that contains the queried location. If C outputs ⊥ at any of its
invocations, the verifier rejects.

2. For i = 1, . . . , s, check that the first symbol in the message encoded by Ãi is 0 (by reading
the systematic part in the first symbol). For i = s+ 1, . . . , 2s, check that the last symbol in
the message encoded by Ãs+i is a(i). If either conditiones do not hold, reject.

3. For all t ∈ Bad(n) (Lemma 5.8) and all i = 1, . . . , s, check that the tth symbol in the message
encoded by Ãi is equal to the (t− 1)th symbol in the message encoded by Ãs+i. (Again, this
is done by reading the systematic parts in the respective codeword symbols.)

4. For any zero-test proof oracle π
Ẽ,R

in the PCP, perform the zero test from Lemma 6.1 to
verify the statement ER ≡ 0.
To read from the codeword Ẽ that encodes the evaluation of some P ∈ Eval(C), the verifier
uses the simulation algorithm V from Lemma 5.1.
Simulating access to Ẽ that encodes the evaluation of some (P,R) ∈ EQ(n) over assignments
Ai, Ai+s, is done in two layers:

(a) First, the verifier uses V from Lemma 5.8, given the additional oracle Y i, to simulate
access to some E′, which is guaranteed to be close-enough to Ẽ.13

(b) Second, the verifier uses the local corrector C from Lemma 4.9 over E′ to simulate access
to Ẽ.

If V or C output ⊥ at any of their invocations, or if any of the zero tests rejects, the verifier
rejects. Otherwise, the verifier accepts.

Let us first analyze the query complexity of V . In Step 1, the verifier performs λ · (3s+K) =
poly(log(n), |C|) local tests over alleged codewords of length O(n), that are over alphabet of size
polylog(n). By Proposition 4.10, each of the tests has query complexity O(n2/m) codeword symbols.
In analyzing the complexity of the remaining steps, we shall take into account an overhead of
n1/m ·polylog(n) due to the use of the local corrector C to simulate queries to the codewords (recall,
by Proposition 4.8, the length of any rectangle I ⊆ I(n) does not exceed

⌈
n1/m

⌉
at any dimension).

In Steps 2 and 3, O(s) field elements are read in total. In Step 4, the verifier performs
poly(log(n), |C|) zero tests to verify statements of size O(n). By Lemma 6.1, each such test has
query complexity at most n1/m · polylog(n). The zero-test verifier is simulated, however, by a sim-
ulator that incurs polylog(n) multiplicative overhead in query complexity (Lemmas 5.1 and 5.8).
In the case of consistency constraints, the simulation additionally costs n2/m · polylog(n) additive
overhead, and any query made by V is actually invoked by the local corrector C, thus multiplying
the number of queries by an additional n1/m ·polylog(n). In total, the query complexity of perform-
ing all zero tests may be bound by n3/m · poly(log(n), |C|), disregarding the overhead of simulating

access to Ãi, W̃ j by C.
We conclude that the query complexity of V is n4/m · poly(log(n), |C|).

13In this step, the verifier need not actually use local correction to simulate access to the encodings Ãi and W̃ j , thus
saving one layer of local correction and a multiplicative factor of Õ(n1/m) in the overall verifier’s query complexity.
This is because the completeness of codeword evaluation from Lemma 5.8 holds even when the algorithm V is given
access to corrupted encodings of the assignments and their witnesses – this can be shown by a stronger version of
Lemma 5.12 that follows by applying the inductive argument in the proof of the lemma already to the first evaluation
step. We skip this low-level optimization, that does not affect the merit of our final result, for a simpler exposition.

48

Completeness of V follows by inspection from the completeness of the local test (Proposi-
tion 4.10), the local corrector (Lemma 4.9), the constraints Eval(n,C) (Lemma 5.1) and EQ(n)
(Lemma 5.8) and the zero tests (Lemma 6.1).

Soundness also follows from the respective soundness guarantees of these components: First,
we argue that if, with non-negligible probability, all local tests over some F̃ ∈ {Ãi, W̃ j} in Step 1
accept then ∆S(F̃ ,TC

m
) < (δ/2Hn)

m, where ∆S is as defined in Proposition 4.10 and δ is the
constant tree distance of TC. Assuming the contrary, a local test over F̃ rejects with probability
at least ϵ = Ω(1/ log2m(n)) by Proposition 4.10. The probability that λ = log2m+2(n) such tests
accept is then at most (1− ϵ)λ = e−ϵλ = n−Ω(log(n)).

Assuming the local tests pass with non-negligible probability, for any F̃ ∈ {Ãi, W̃ j}, we have
∆S(F̃ ,TC

m
) < (δ/2Hn)

m and by definition there exists F such that, for any I, ∆S(F̃I ,TC
m(FI)) <

(δ/2Hn)
m. Therefore, with probability all but negligible, the local corrector C, when invoked over

F̃I , either outputs ⊥ (in which case V rejects) or simulates access to TCm(FI) (Lemma 4.9). Hence,

we may assume that in Steps 2 to 4, the oracles Ã1, . . . , Ã3s, W̃ 1, . . . , W̃K that the verifier reads
from are indeed codewords in TC

m
that encode some A1, . . . , A3s,W 1, . . . ,WK (and correspond to

the unique closest codewords to the actual oracles given in the proof).
If (C, a, n) /∈ CktReach, then either:

1. Ai(1) ̸= 0 for some i ∈ {1, . . . , s}, or Ai(n) ̸= a(i) for some i ∈ {s+ 1, . . . , 2s}, or

2. Ai(t) ̸= Ai+s(t− 1) for some i ∈ {s+ 1, . . . , 2s} and 1 < t ≤ n, or

3. A1, . . . , A3s are not binary or C(A1(t), . . . , A3s(t)) ̸= 1 for some 1 ≤ t ≤ n.

If the first condition holds, then V rejects already in Step 2. If the second condition holds
with t ∈ Bad(n), then V rejects in Step 3. If it holds with t /∈ Bad(n) or the third condition
holds then, by Lemmas 5.1 and 5.8 (resp.), there exists (P,R) ∈ Eval(C) ∪ EQ(n) such that
E = P (A1, . . . , A3s,W) ∈ FI satisfies ER ̸≡ 0 (in the constraints from Eval(C), we have R = I).
We claim that the zero-test from Step 4, corresponding to the broken constraint, rejects with
probability all but negligible.

To invoke the soundness of the zero tests and finish (Lemma 6.1), we confirm that V indeed
reads from the codeword Ẽ ∈ (TC′)m(E). When the constraint is from Eval(C), this straight-
forwardly holds by Lemma 5.1. When the constraint is from EQ(n), then by Lemma 5.8, the
simulation algorithm V either outputs ⊥ and the verifier rejects, or simulates access to a word E′

satisfying ∆S(Ẽ, E
′) < O(1/ logm+1(n)). The local corrector over such an E′, with probability all

but negligible, either outputs ⊥, which is again fine, or simulates access to Ẽ.

7.3 De-Amortization

To finish the proof of Theorem 1.5, we explain how to de-amortize the extension of any witness W i

forEQ. Identical techniques apply for de-amortizing the evaluation vector E = P (A,A′,W 1, . . . ,WK)
for any (P,R) ∈ EQ.

The witnesses W 1, . . . ,WK from Lemma 5.8 come in four types: BD for some D ⊆ [m] (1),
Gi1,...,im for ij ≤ ⌈log nj⌉, where nj = max(t1,...,tm)∈I(n)(tj) (2), T r for r ∈ [M] (3) or their corre-
sponding witnesses for Eval(Cf) (4).

The easiest to amortize are T r for r = 1, . . . ,M . Recall that these encode the binary represen-
tation of the coordinates in the domain and do not depend on the assignments. They are defined
over [N]m, where N is the smallest power of 2 satisfying I(n) ⊆ [N]m. It holds that N ≤ 2

⌈
n1/m

⌉
(Proposition 4.8) and hence Nm ≤ 2mn. Therefore, we can de-amortize any T r by extending it by

49

2m at every step following, for example, the embedding φ (Fig. 4). Consequently, by Lemma 5.1,
we can de-amortize the witnesses for Eval(Cf) corresponding to T 1, . . . , TM .

Straight-forward de-amortization applies also for any BD. There, the domain is rounded up to
the next power of 2 only along dimensions j ∈ D. Upon extending the corresponding assignment A
with the nth value, letting (n1, . . . , nm) = φ(n), we extend BD to any coordinate (t1, . . . , tm) where
tj = nj for j /∈ D and tj ∈ {2nj − 1, 2nj} for j ∈ D. Crucially, these coordinates in BD, 2

|D| ≤ 2m

in total, are already defined at this point given A.
Lastly, we show how to de-amortize any Gi1,...,im . Recall Gi1,...,im is defined over IGi1,...,im(n)

which is the union of all rectangles [n1(i1)]× · · · × [nm(im)] where [n1]× · · · × [nm] ∈ Rect(n) and
nj(i) = 2i

⌊
n/2i

⌉
.

Upon input a new value at coordinate (t1, . . . , tm) in the “lifting” of A to m dimension (via
φ), where tj = kj · 2ij + t′j for some kj and 1 ≤ t′j ≤ 2ij−1, we extend Gi1,...,im by computing the

symbols at coordinates (k1 · 2i1 + t′′1, . . . , km · 2im + t′′m) for t′′j ∈ {2t′j − 1, 2t′j}.
On a close observation, this shows, for any rectangle I = [n1] × · · · × [nm] ⊆ I(n), how to

incrementally compute Gi1,...,im at IG = [n1(i1)]×· · ·× [nm(im)], O(1) symbols at a time, whenever
AI extends by one symbol. This seems to achieve what we want except it is not clear how to
carry on the computation given that Gi1,...,im at (k1 · 2i1 + t′′1, . . . , km · 2im + t′′m) is not always fully
defined given A up to coordinate t. Specifically, in any such block of size 2i1 × · · · × 2im (defined
by fixing k1, . . . , km), there exists exactly one coordinate t∗ where Gi1,...,im is not always zero and
takes the value at the same location in A (this is the coordinate in Λi1 × · · · × Λim , see Eq. (11)).
Since this value is unknown by the time it must be added to Gi1,...,im in the above incremental
procedure, we let the proof contain the two possible versions of Gi1,...,im corresponding to the two
different Boolean values it might take at t∗. By the time t∗, when the value becomes known, the
computation of Gi1,...,im for this block is finished, the proof “consolidates” the correct version (by
standard pointer techniques), and proceeds. Importantly, any part of Gi1,...,im is contained in IG

only after it is consolidated.
One last issue is that, in a naive implementation of the above, the proof is extended by an

infinite amount of symbols since there are infinitely many oracles Gi1,...,im which we add to. Notice,
however, that Gi1,...,im is all-zeros over [2i1−1] × · · · × [2im−1] and, due to the linearity of the tree
code, so is its corresponding codeword. Hence, values in Gi1,...,im and its codeword are not actually
written to the proof before the walk φ reaches a coordinate (n1, . . . , nm) where nj > 2i1−1, i.e.
ij < log(nj) + 1.

Acknowledgments

We thank Salil Vadhan and Siu On Chan for insightful discussions and Nikolaj Schwartzbach for
advice on exposition.

References

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and hardness of approximation problems. In 33rd Annual Symposium
on Foundations of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October
1992, pages 14–23. IEEE Computer Society, 1992.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of NP. J. ACM, 45(1):70–122, 1998.

50

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120. ACM, 2013.

[BCG24] Annalisa Barbara, Alessandro Chiesa, and Ziyi Guan. Relativized succinct arguments
in the ROM do not exist. Cryptology ePrint Archive, Paper 2024/728, 2024.

[BCN21] Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan. Candidate tree codes
via pascal determinant cubes. In Mary Wootters and Laura Sanità, editors, Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington,
Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 54:1–
54:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[BFL90] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover
interactive protocols. In Proceedings [1990] 31st Annual Symposium on Foundations of
Computer Science, pages 16–25 vol.1, 1990.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking com-
putations in polylogarithmic time. In Proceedings of the Twenty-Third Annual ACM
Symposium on Theory of Computing, STOC ’91, page 21–32, New York, NY, USA,
1991. Association for Computing Machinery.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J.
Comput., 36(4):889–974, 2006.

[BS04] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
In Klaus Jansen, Sanjeev Khanna, José D. P. Rolim, and Dana Ron, editors, Approxi-
mation, Randomization, and Combinatorial Optimization, Algorithms and Techniques,
7th International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems, APPROX 2004, and 8th International Workshop on Randomization and
Computation, RANDOM 2004, Cambridge, MA, USA, August 22-24, 2004, Proceed-
ings, volume 3122 of Lecture Notes in Computer Science, pages 286–297. Springer,
2004.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008.

[CHK+19] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. Finding a nash equilibrium is no easier than breaking
fiat-shamir. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1103–1114.
ACM, 2019.

[CHS18] Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman. Explicit binary tree codes
with polylogarithmic size alphabet. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 535–
544. ACM, 2018.

51

[CL20] Alessandro Chiesa and Siqi Liu. On the impossibility of probabilistic proofs in rela-
tivized worlds. In 11th Innovations in Theoretical Computer Science Conference (ITCS
2020), volume 151, pages 57:1–57:30, 2020.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-
interactive arguments for batch-np and applications. In 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 -
November 3, 2022, pages 1057–1068. IEEE, 2022.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. In-
teractive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292,
1996.

[Gel17] Ran Gelles. Coding for interactive communication: A survey. Found. Trends Theor.
Comput. Sci., 13(1-2):1–157, 2017.

[GRR20] Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable codes.
Theory Comput., 16:1–68, 2020.

[HN23] Mathias Hall-Andersen and Jesper Buus Nielsen. On valiant’s conjecture - impossibility
of incrementally verifiable computation from random oracles. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part II, volume 14005 of Lecture Notes
in Computer Science, pages 438–469. Springer, 2023.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 723–732. ACM, 1992.

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally
correctable and locally testable codes with sub-polynomial query complexity. J. ACM,
64(2):11:1–11:42, 2017.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, October 1992.

[Mei09] Or Meir. Combinatorial construction of locally testable codes. SIAM J. Comput.,
39(2):491–544, 2009.

[Mei13] Or Meir. IP = PSPACE using error-correcting codes. SIAM J. Comput., 42(1):380–403,
2013.

[Mic95] Silvio Micali. Computationally-sound proofs. In Johann A. Makowsky and Elena V.
Ravve, editors, Proceedings of the Annual European Summer Meeting of the Association
of Symbolic Logic, Logic Colloquium 1995, Haifa, Israel, August 9-18, 1995, volume 11
of Lecture Notes in Logic, pages 214–268. Springer, 1995.

52

[MRR25] Tamer Mour, Alon Rosen, and Ron Rothblum. Locally testable tree codes. In Yossi
Azar and Debmalya Panigrahi, editors, Proceedings of the 2025 Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January
12-15, 2025, pages 5523–5559. SIAM, 2025.

[MS14] Cristopher Moore and Leonard J. Schulman. Tree codes and a conjecture on exponential
sums. In Moni Naor, editor, Innovations in Theoretical Computer Science, ITCS’14,
Princeton, NJ, USA, January 12-14, 2014, pages 145–154. ACM, 2014.

[NPR19] Moni Naor, Omer Paneth, and Guy N. Rothblum. Incrementally verifiable computation
via incremental PCPs. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryp-
tography - 17th International Conference, TCC 2019, Nuremberg, Germany, December
1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes in Computer Science,
pages 552–576. Springer, 2019.

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch
arguments. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1045–1056.
IEEE, 2022.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs.
In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Comput-
ing, STOC ’94, page 194–203, New York, NY, USA, 1994. Association for Computing
Machinery.

[Pud13] Pavel Pudlák. Linear tree codes and the problem of explicit constructions. CoRR,
abs/1310.5684, 2013.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In S. Rao
Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego,
CA, USA, pages 747–756. ACM, 1993.

[Sch94] Leonard J. Schulman. Postscript from 21 september 2003 to “coding for interactive
communication”, 1994. Online at http://www.cs.caltech.edu/~schulman/Papers/
intercodingpostscript.txt.

[Spi95] Daniel Alan Spielman. Computationally efficient error-correcting codes and holographic
proofs. PhD thesis, USA, 1995. AAI0576626.

[Sud04] Madhu Sudan. Probabilistically checkable proofs. In Steven Rudich and Avi Wigderson,
editors, Computational Complexity Theory, volume 10 of IAS / Park City mathematics
series, pages 349–389. AMS Chelsea Publishing, 2004.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory
of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008, volume
4948 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[Vid15] Michael Viderman. A combination of testability and decodability by tensor products.
Random Struct. Algorithms, 46(3):572–598, 2015.

53

http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.txt
http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.txt

	Introduction
	Tree PCPs
	Our Results
	Incremental Proofs
	Further Research

	Technical Overview
	The BFLS Blueprint
	The Tree PCP Outline
	PCP-Friendly Tree Codes?
	The Base Tree Code
	Evaluating Consistency

	Preliminaries
	Incremental Ensembles
	Tree Codes

	The Tree Code
	Local Correctability of Tensor Tree Codes
	A Local Test for The Flattened Code
	The Base Code

	Constraint Evaluation under Codewords
	The Transition Constraints
	The Consistency Constraints
	Shifting under Codewords
	Checking Consistency in Flattened Codewords
	Evaluating The Coefficients and
	Proof of lem:eval-consistency

	The Zero Test
	Sumcheck for Tree Code Tensors
	The Zero Test Proof Oracle

	The Tree PCP
	The Proof Oracle
	The Verifier
	De-Amortization

